|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.03.06.0066.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BesselY[\[Nu], z] \[Proportional] (Csc[Pi \[Nu]]/(2 Sqrt[2 Pi]))
((Cos[\[Nu] Pi] (Exp[(-I) z - ((I Pi)/4) (1 + 2 \[Nu])]
(-z)^(-(1/2) - \[Nu]) z^\[Nu] (1 - Sqrt[z^2]/z) +
(Exp[(-I) z + ((I Pi)/4) (1 + 6 \[Nu])] ((-I) z)^\[Nu]
(1 + Sqrt[z^2]/z))/(z^(1/2) (I z)^\[Nu])) -
((Exp[(-I) z - ((I Pi)/4) (1 - 2 \[Nu])] (-z)^(-(1/2) + \[Nu])
(1 - Sqrt[z^2]/z))/z^\[Nu] + (Exp[(-I) z + ((I Pi)/4) (1 - 6 \[Nu])]
(I z)^\[Nu] (1 + Sqrt[z^2]/z))/(((-I) z)^\[Nu] z^(1/2))))
(Sum[((Pochhammer[1/2 + \[Nu], k] Pochhammer[1/2 - \[Nu], k])/k!)
(I/(2 z))^k, {k, 0, n}] + O[1/z^(n + 1)]) +
(Cos[\[Nu] Pi] (Exp[I z + ((I Pi)/4) (1 + 2 \[Nu])] (-z)^(-(1/2) - \[Nu])
z^\[Nu] (1 - Sqrt[z^2]/z) + (Exp[I z + ((I Pi)/4) (-1 + 2 \[Nu])]
((-I) z)^\[Nu] (1 + Sqrt[z^2]/z))/(z^(1/2) (I z)^\[Nu])) -
((Exp[I z + ((I Pi)/4) (1 - 2 \[Nu])] (-z)^(-(1/2) + \[Nu])
(1 - Sqrt[z^2]/z))/z^\[Nu] + (Exp[I z - ((I Pi)/4) (1 + 2 \[Nu])]
(I z)^\[Nu] (1 + Sqrt[z^2]/z))/(((-I) z)^\[Nu] z^(1/2))))
(Sum[((Pochhammer[1/2 + \[Nu], k] Pochhammer[1/2 - \[Nu], k])/k!)
(-(I/(2 z)))^k, {k, 0, n}] + O[1/z^(n + 1)])) /;
(Abs[z] -> Infinity) && !Element[\[Nu], Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BesselY", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["\[Nu]", " ", "\[Pi]"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Exp", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], "-", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "4"], RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"], RowBox[List["(", RowBox[List["1", "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]], "+", RowBox[List[RowBox[List["Exp", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], "+", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "4"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["6", " ", "\[Nu]"]]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], ")"]], "\[Nu]"], " ", SuperscriptBox["z", RowBox[List["-", FractionBox["1", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]]]], ")"]]]], "-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Exp", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], "-", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "4"], RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], RowBox[List["(", RowBox[List["1", "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]], "+", RowBox[List[RowBox[List["Exp", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], "+", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "4"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["6", " ", "\[Nu]"]]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["-", FractionBox["1", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]], "\[Nu]"], RowBox[List["(", RowBox[List["1", "+", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]]]], ")"]]]], ")"]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], ",", "k"]], "]"]], " "]], RowBox[List["k", "!"]]], SuperscriptBox[RowBox[List["(", FractionBox["\[ImaginaryI]", RowBox[List["2", " ", "z"]]], ")"]], "k"]]]]], "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", RowBox[List["n", "+", "1"]]]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["\[Nu]", " ", "\[Pi]"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Exp", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "4"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"], RowBox[List["(", RowBox[List["1", "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]], "+", RowBox[List[RowBox[List["Exp", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "4"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], ")"]], "\[Nu]"], " ", SuperscriptBox["z", RowBox[List["-", FractionBox["1", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]]]], ")"]]]], "-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Exp", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "4"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], RowBox[List["(", RowBox[List["1", "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]], "+", RowBox[List[RowBox[List["Exp", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "-", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "4"], RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["-", FractionBox["1", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]], "\[Nu]"], RowBox[List["(", RowBox[List["1", "+", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]]]], ")"]]]], " ", ")"]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], ",", "k"]], "]"]], " "]], RowBox[List["k", "!"]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["\[ImaginaryI]", RowBox[List["2", " ", "z"]]]]], ")"]], "k"]]]]], "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", RowBox[List["n", "+", "1"]]]], "]"]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> Y </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mfrac> <mrow> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> ν </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> z </mi> <mi> ν </mi> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mtext> </mtext> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> ν </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mtext> </mtext> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> ν </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "+", FractionBox["1", "2"]]], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> ⅈ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> ν </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> ν </mi> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mtext> </mtext> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> ν </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mtext> </mtext> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> ν </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mtext> </mtext> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "+", FractionBox["1", "2"]]], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mi> ⅈ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> ν </mi> <mo> ∉ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> BesselY </ci> <ci> ν </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <csc /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <ci> ν </ci> <pi /> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <ci> ν </ci> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <apply> <power /> <ci> z </ci> <ci> ν </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <ci> ν </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> ν </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <ci> ν </ci> <pi /> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <ci> ν </ci> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> ν </ci> </apply> <apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <ci> ν </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> ν </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <notin /> <ci> ν </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BesselY", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["\[Nu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], "-", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["6", " ", "\[Nu]"]]]], ")"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], ")"]], "\[Nu]"], " ", SuperscriptBox["z", RowBox[List["-", FractionBox["1", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]]]], ")"]]]], "-", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], "-", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["6", " ", "\[Nu]"]]]], ")"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["-", FractionBox["1", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]], "\[Nu]"], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]]]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], ",", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["\[ImaginaryI]", RowBox[List["2", " ", "z"]]], ")"]], "k"]]], RowBox[List["k", "!"]]]]], "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", RowBox[List["n", "+", "1"]]]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["\[Nu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], ")"]], "\[Nu]"], " ", SuperscriptBox["z", RowBox[List["-", FractionBox["1", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]]]], ")"]]]], "-", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "-", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["-", FractionBox["1", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]], "\[Nu]"], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]]]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], ",", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["\[ImaginaryI]", RowBox[List["2", " ", "z"]]]]], ")"]], "k"]]], RowBox[List["k", "!"]]]]], "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", RowBox[List["n", "+", "1"]]]], "]"]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|