|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.03.13.0007.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Derivative[2][w][z] + (m^2/(4 z) - (\[Nu]^2 - 1)/(4 z^2)) w[z] == 0 /;
w[z] == Subscript[c, 1] Sqrt[z] BesselJ[\[Nu], Sqrt[m^2] Sqrt[z]] +
Subscript[c, 2] Sqrt[z] BesselY[\[Nu], Sqrt[m^2] Sqrt[z]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["m", "2"], RowBox[List["4", " ", "z"]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[Nu]", "2"], "-", "1"]], RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]]], ")"]], " ", RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], " ", "/;", " ", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], SqrtBox["z"], " ", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", RowBox[List[SqrtBox[SuperscriptBox["m", "2"]], " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], SqrtBox["z"], " ", RowBox[List["BesselY", "[", RowBox[List["\[Nu]", ",", RowBox[List[SqrtBox[SuperscriptBox["m", "2"]], " ", SqrtBox["z"]]]]], "]"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> w </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mtext> </mtext> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mrow> <msqrt> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mtext> </mtext> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <msub> <mi> Y </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mrow> <msqrt> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> BesselJ </ci> <ci> ν </ci> <apply> <times /> <apply> <power /> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> BesselY </ci> <ci> ν </ci> <apply> <times /> <apply> <power /> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["m_", "2"], RowBox[List["4", " ", "z_"]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[Nu]_", "2"], "-", "1"]], RowBox[List["4", " ", SuperscriptBox["z_", "2"]]]]]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", SqrtBox["z"], " ", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", RowBox[List[SqrtBox[SuperscriptBox["m", "2"]], " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", SqrtBox["z"], " ", RowBox[List["BesselY", "[", RowBox[List["\[Nu]", ",", RowBox[List[SqrtBox[SuperscriptBox["m", "2"]], " ", SqrtBox["z"]]]]], "]"]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|