  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/03.03.13.0022.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Derivative[2][w][z] - (-(Derivative[1][g][z]/g[z]) + 
     (2 Derivative[1][h][z])/h[z] + Derivative[2][g][z]/Derivative[1][g][z]) 
    Derivative[1][w][z] - ((-1 + \[Nu]^2/g[z]^2) Derivative[1][g][z]^2 + 
     (Derivative[1][g][z] Derivative[1][h][z])/(g[z] h[z]) - 
     (Derivative[1][h][z] Derivative[2][g][z])/(h[z] Derivative[1][g][z]) + 
     (-2 Derivative[1][h][z]^2 + h[z] Derivative[2][h][z])/h[z]^2) w[z] == 
  0 /; w[z] == Subscript[c, 1] h[z] BesselJ[\[Nu], g[z]] + 
   Subscript[c, 2] h[z] BesselY[\[Nu], g[z]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], RowBox[List["g", "[", "z", "]"]]]]], "+", FractionBox[RowBox[List["2", " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], RowBox[List["h", "[", "z", "]"]]], "+", FractionBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]], ")"]], RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], " ", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", FractionBox[SuperscriptBox["\[Nu]", "2"], SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], RowBox[List[RowBox[List["g", "[", "z", "]"]], " ", RowBox[List["h", "[", "z", "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], RowBox[List[RowBox[List["h", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List[RowBox[List["h", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], SuperscriptBox[RowBox[List["h", "[", "z", "]"]], "2"]]]], ")"]], RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", " ", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], RowBox[List["h", "[", "z", "]"]], RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], RowBox[List["h", "[", "z", "]"]], RowBox[List["BesselY", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mrow>  <msup>  <mi> w </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mfrac>  </mrow>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> ν </mi>  <mn> 2 </mn>  </msup>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mfrac>  <mrow>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mrow>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <msup>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> w </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo>  </mo>  <mn> 0 </mn>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> w </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mrow>  <mrow>  <msub>  <mi> c </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> J </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msub>  <mi> c </mi>  <mn> 2 </mn>  </msub>  <mo> ⁢ </mo>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> Y </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <plus />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> ν </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <eq />  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <apply>  <ci> BesselJ </ci>  <ci> ν </ci>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <apply>  <ci> BesselY </ci>  <ci> ν </ci>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], RowBox[List["g", "[", "z_", "]"]]]]], "+", FractionBox[RowBox[List["2", " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], RowBox[List["h", "[", "z_", "]"]]], "+", FractionBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", FractionBox[SuperscriptBox["\[Nu]_", "2"], SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], RowBox[List[RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List["h", "[", "z_", "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], RowBox[List[RowBox[List["h", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List[RowBox[List["h", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], SuperscriptBox[RowBox[List["h", "[", "z_", "]"]], "2"]]]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", RowBox[List["h", "[", "z", "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", RowBox[List["h", "[", "z", "]"]], " ", RowBox[List["BesselY", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |