|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.03.21.0047.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[BesselY[\[Nu], a z^r]^2, z] ==
-((z Csc[Pi \[Nu]] (2^(1 + 2 \[Nu]) (a z^r)^(2 \[Nu]) (-1 + 4 r^2 \[Nu]^2)
Cot[Pi \[Nu]] Gamma[1 - \[Nu]] Gamma[1 + \[Nu]]
HypergeometricPFQ[{1/2, 1/(2 r)}, {1 + 1/(2 r), 1 - \[Nu], 1 + \[Nu]},
(-a^2) z^(2 r)] + (16^\[Nu] + 2^(1 + 4 \[Nu]) r \[Nu]) Csc[Pi \[Nu]]
Gamma[1 + \[Nu]]^2 HypergeometricPFQ[{1/2 - \[Nu], 1/(2 r) - \[Nu]},
{1 - 2 \[Nu], 1 - \[Nu], 1 + 1/(2 r) - \[Nu]}, (-a^2) z^(2 r)] -
(a z^r)^(4 \[Nu]) (-1 + 2 r \[Nu]) Cos[Pi \[Nu]] Cot[Pi \[Nu]]
Gamma[1 - \[Nu]]^2 HypergeometricPFQ[{1/2 + \[Nu], 1/(2 r) + \[Nu]},
{1 + \[Nu], 1 + 1/(2 r) + \[Nu], 1 + 2 \[Nu]}, (-a^2) z^(2 r)]))/
(4^\[Nu] (a z^r)^(2 \[Nu])))/((-1 + 4 r^2 \[Nu]^2) Gamma[1 - \[Nu]]^2
Gamma[1 + \[Nu]]^2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["BesselY", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]], "2"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["4", RowBox[List["-", "\[Nu]"]]], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", "\[Nu]"]]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["r", "2"], " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", RowBox[List["2", " ", "r"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "r"]]]]], ",", RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["16", "\[Nu]"], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", RowBox[List["4", " ", "\[Nu]"]]]]], " ", "r", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], ",", RowBox[List[FractionBox["1", RowBox[List["2", " ", "r"]]], "-", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ",", RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "-", "\[Nu]"]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["4", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "r", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]], "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ",", RowBox[List[FractionBox["1", RowBox[List["2", " ", "r"]]], "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "+", "\[Nu]"]], ",", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]]]], ")"]]]], ")"]]]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["r", "2"], " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], "2"]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msup> <mrow> <msub> <mi> Y </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 4 </mn> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> r </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ν </mi> </mrow> <mo> , </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["1", RowBox[List["2", " ", "r"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "r"]]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "\[Nu]"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Nu]", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Nu]", "+", FractionBox["1", "2"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Nu]", "+", FractionBox["1", RowBox[List["2", " ", "r"]]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Nu]", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Nu]", "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <msup> <mn> 16 </mn> <mi> ν </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> ν </mi> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </mfrac> <mo> - </mo> <mi> ν </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ν </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", RowBox[List["2", " ", "r"]]], "-", "\[Nu]"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "\[Nu]"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", "\[Nu]"]], "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> r </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <power /> <apply> <ci> BesselY </ci> <ci> ν </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <ci> z </ci> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> ν </ci> </apply> </apply> <apply> <csc /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <cot /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <cos /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <cot /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> ν </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <ci> r </ci> <ci> ν </ci> </apply> <apply> <power /> <cn type='integer'> 16 </cn> <ci> ν </ci> </apply> </apply> <apply> <csc /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["BesselY", "[", RowBox[List["\[Nu]_", ",", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], "]"]], "2"], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["4", RowBox[List["-", "\[Nu]"]]], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", "\[Nu]"]]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["r", "2"], " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", RowBox[List["2", " ", "r"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "r"]]]]], ",", RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["16", "\[Nu]"], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", RowBox[List["4", " ", "\[Nu]"]]]]], " ", "r", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], ",", RowBox[List[FractionBox["1", RowBox[List["2", " ", "r"]]], "-", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ",", RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "-", "\[Nu]"]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["4", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "r", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]], "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ",", RowBox[List[FractionBox["1", RowBox[List["2", " ", "r"]]], "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "+", "\[Nu]"]], ",", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["r", "2"], " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|