|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.13.06.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KelvinBei[z] \[Proportional] KelvinBei[Subscript[z, 0]] +
((KelvinBei[1, Subscript[z, 0]] - KelvinBer[1, Subscript[z, 0]])
(z - Subscript[z, 0]))/Sqrt[2] +
(1/4) (KelvinBer[Subscript[z, 0]] - KelvinBer[2, Subscript[z, 0]])
(z - Subscript[z, 0])^2 + \[Ellipsis] /; (z -> Subscript[z, 0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinBei", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List["KelvinBei", "[", SubscriptBox["z", "0"], "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["KelvinBei", "[", RowBox[List["1", ",", SubscriptBox["z", "0"]]], "]"]], "-", RowBox[List["KelvinBer", "[", RowBox[List["1", ",", SubscriptBox["z", "0"]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], SqrtBox["2"]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["KelvinBer", "[", SubscriptBox["z", "0"], "]"]], "-", RowBox[List["KelvinBer", "[", RowBox[List["2", ",", SubscriptBox["z", "0"]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["z", "0"]]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> bei </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <mi> bei </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> bei </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msub> <mi> ber </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mtext> </mtext> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <msub> <mi> bei </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msub> <mi> ber </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mo> … </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> KelvinBei </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> KelvinBei </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <ci> KelvinBei </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> KelvinBer </ci> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <ci> KelvinBei </ci> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> KelvinBer </ci> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <ci> … </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinBei", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["KelvinBei", "[", SubscriptBox["zz", "0"], "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["KelvinBei", "[", RowBox[List["1", ",", SubscriptBox["zz", "0"]]], "]"]], "-", RowBox[List["KelvinBer", "[", RowBox[List["1", ",", SubscriptBox["zz", "0"]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], SqrtBox["2"]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["KelvinBer", "[", SubscriptBox["zz", "0"], "]"]], "-", RowBox[List["KelvinBer", "[", RowBox[List["2", ",", SubscriptBox["zz", "0"]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["zz", "0"]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|