|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.13.06.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KelvinBei[z] == Sum[(((-1 + I)^k 2^(-1 - (3 k)/2))/k!)
(Sum[Binomial[k, 2 j] ((1 + I^k) KelvinBei[4 j - k, Subscript[z, 0]] -
I (1 - I^k) KelvinBer[4 j - k, Subscript[z, 0]]),
{j, 0, Floor[k/2]}] + Sum[Binomial[k, 1 + 2 j]
((-1 - I^k) KelvinBei[2 + 4 j - k, Subscript[z, 0]] +
I (1 - I^k) KelvinBer[2 + 4 j - k, Subscript[z, 0]]),
{j, 0, Floor[(k - 1)/2]}]) (z - Subscript[z, 0])^k, {k, 0, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["KelvinBei", "[", "z", "]"]], "\[Equal]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[ImaginaryI]"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", FractionBox[RowBox[List["3", " ", "k"]], "2"]]]]]], RowBox[List["k", "!"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", FractionBox["k", "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["k", ",", RowBox[List["2", " ", "j"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["4", " ", "j"]], "-", "k"]], ",", SubscriptBox["z", "0"]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["4", " ", "j"]], "-", "k"]], ",", SubscriptBox["z", "0"]]], "]"]]]]]], ")"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["k", "-", "1"]], "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["k", ",", RowBox[List["1", "+", RowBox[List["2", " ", "j"]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["4", " ", "j"]], "-", "k"]], ",", SubscriptBox["z", "0"]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["4", " ", "j"]], "-", "k"]], ",", SubscriptBox["z", "0"]]], "]"]]]]]], ")"]]]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "k"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> bei </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mi> k </mi> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List["2", " ", "j"]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> ⅈ </mi> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> bei </mi> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> k </mi> </mrow> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ⅈ </mi> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> ber </mi> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> k </mi> </mrow> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> - </mo> <msup> <mi> ⅈ </mi> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> bei </mi> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ⅈ </mi> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> ber </mi> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> KelvinBei </ci> <ci> z </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> k </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <ci> k </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> k </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <imaginaryi /> <ci> k </ci> </apply> </apply> <apply> <ci> KelvinBei </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <imaginaryi /> <ci> k </ci> </apply> </apply> </apply> <apply> <ci> KelvinBer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> k </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <imaginaryi /> <ci> k </ci> </apply> </apply> </apply> <apply> <ci> KelvinBei </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <imaginaryi /> <ci> k </ci> </apply> </apply> </apply> <apply> <ci> KelvinBer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinBei", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[ImaginaryI]"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", FractionBox[RowBox[List["3", " ", "k"]], "2"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", FractionBox["k", "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["k", ",", RowBox[List["2", " ", "j"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["4", " ", "j"]], "-", "k"]], ",", SubscriptBox["zz", "0"]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["4", " ", "j"]], "-", "k"]], ",", SubscriptBox["zz", "0"]]], "]"]]]]]], ")"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["k", "-", "1"]], "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["k", ",", RowBox[List["1", "+", RowBox[List["2", " ", "j"]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["4", " ", "j"]], "-", "k"]], ",", SubscriptBox["zz", "0"]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["4", " ", "j"]], "-", "k"]], ",", SubscriptBox["zz", "0"]]], "]"]]]]]], ")"]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "k"]]], RowBox[List["k", "!"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|