  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/03.13.21.0002.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Integrate[(t^(\[Alpha] - 1) KelvinBei[t])/E^(p t), {t, 0, Infinity}] == 
  (1/4) p^(-2 - \[Alpha]) Gamma[2 + \[Alpha]] 
   HypergeometricPFQ[{(\[Alpha] + 2)/4, (\[Alpha] + 3)/4, 1 + \[Alpha]/4, 
     (\[Alpha] + 5)/4}, {1, 3/2, 3/2}, -(1/p^4)] /; 
 Re[\[Alpha]] > -2 && (Re[p] > 1/Sqrt[2] || (Re[p] == 1/Sqrt[2] && 
    Re[\[Alpha]] < 3/2)) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[SuperscriptBox["t", RowBox[List["\[Alpha]", "-", "1"]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "p"]], " ", "t"]]], RowBox[List["KelvinBei", "[", "t", "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "2"]], "-", "\[Alpha]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", "\[Alpha]"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["\[Alpha]", "+", "2"]], "4"], ",", FractionBox[RowBox[List["\[Alpha]", "+", "3"]], "4"], ",", RowBox[List["1", "+", FractionBox["\[Alpha]", "4"]]], ",", FractionBox[RowBox[List["\[Alpha]", "+", "5"]], "4"]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", FractionBox["3", "2"], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], ">", RowBox[List["-", "2"]]]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "p", "]"]], ">", FractionBox["1", SqrtBox["2"]]]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "p", "]"]], "\[Equal]", FractionBox["1", SqrtBox["2"]]]], "\[And]", RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], "<", FractionBox["3", "2"]]]]], ")"]]]], ")"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msubsup>  <mo> ∫ </mo>  <mn> 0 </mn>  <mi> ∞ </mi>  </msubsup>  <mrow>  <msup>  <mi> t </mi>  <mrow>  <mi> α </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> ⁢ </mo>  <mi> t </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> bei </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> t </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> t </mi>  </mrow>  </mrow>  </mrow>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> p </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> α </mi>  </mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> α </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 4 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> α </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mn> 4 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mi> α </mi>  <mo> + </mo>  <mn> 3 </mn>  </mrow>  <mn> 4 </mn>  </mfrac>  <mo> , </mo>  <mrow>  <mfrac>  <mi> α </mi>  <mn> 4 </mn>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mfrac>  <mrow>  <mi> α </mi>  <mo> + </mo>  <mn> 5 </mn>  </mrow>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> p </mi>  <mn> 4 </mn>  </msup>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "4"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["\[Alpha]", "+", "2"]], "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["\[Alpha]", "+", "3"]], "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["\[Alpha]", "+", "5"]], "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> α </mi>  <mo> ) </mo>  </mrow>  <mo> > </mo>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> p </mi>  <mo> ) </mo>  </mrow>  <mo> > </mo>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mfrac>  </mrow>  <mo> ∨ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> p </mi>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mfrac>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> α </mi>  <mo> ) </mo>  </mrow>  <mo> < </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> t </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <power />  <ci> t </ci>  <apply>  <plus />  <ci> α </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <ci> t </ci>  </apply>  </apply>  <apply>  <ci> KelvinBei </ci>  <ci> t </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <power />  <ci> p </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> α </ci>  </apply>  <cn type='integer'> -2 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> α </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <apply>  <plus />  <ci> α </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> α </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> α </ci>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> α </ci>  <cn type='integer'> 5 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </list>  <list>  <cn type='integer'> 1 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> p </ci>  <cn type='integer'> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <gt />  <apply>  <real />  <ci> α </ci>  </apply>  <cn type='integer'> -2 </cn>  </apply>  <apply>  <or />  <apply>  <gt />  <apply>  <real />  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <eq />  <apply>  <real />  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <lt />  <apply>  <real />  <ci> α </ci>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["t_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "p_"]], " ", "t_"]]], " ", RowBox[List["KelvinBei", "[", "t_", "]"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "2"]], "-", "\[Alpha]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", "\[Alpha]"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["\[Alpha]", "+", "2"]], "4"], ",", FractionBox[RowBox[List["\[Alpha]", "+", "3"]], "4"], ",", RowBox[List["1", "+", FractionBox["\[Alpha]", "4"]]], ",", FractionBox[RowBox[List["\[Alpha]", "+", "5"]], "4"]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", FractionBox["3", "2"], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], ">", RowBox[List["-", "2"]]]], "&&", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "p", "]"]], ">", FractionBox["1", SqrtBox["2"]]]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "p", "]"]], "\[Equal]", FractionBox["1", SqrtBox["2"]]]], "&&", RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], "<", FractionBox["3", "2"]]]]], ")"]]]], ")"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |