Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinBei






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinBei[nu,z] > Specific values > Specialized values > For fixed z > Explicit rational nu





http://functions.wolfram.com/03.17.03.0028.01









  


  










Input Form





KelvinBei[3/2, z] == (Sqrt[2/Pi] ((-Cos[(3 Pi)/8]) Sin[z/Sqrt[2]] (Cosh[z/Sqrt[2]] + z Sinh[z/Sqrt[2]]) + Sin[(3 Pi)/8] Cos[z/Sqrt[2]] (z Cosh[z/Sqrt[2]] - Sinh[z/Sqrt[2]])))/z^(3/2)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["KelvinBei", "[", RowBox[List[FractionBox["3", "2"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[SqrtBox[FractionBox["2", "\[Pi]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "3"]], "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]"]], "8"], "]"]]]], " ", RowBox[List["Sin", "[", FractionBox["z", SqrtBox["2"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", FractionBox["z", SqrtBox["2"]], "]"]], "+", RowBox[List["z", " ", RowBox[List["Sinh", "[", FractionBox["z", SqrtBox["2"]], "]"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]"]], "8"], "]"]], " ", RowBox[List["Cos", "[", FractionBox["z", SqrtBox["2"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["Cosh", "[", FractionBox["z", SqrtBox["2"]], "]"]]]], "-", RowBox[List["Sinh", "[", FractionBox["z", SqrtBox["2"]], "]"]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> bei </mi> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <msqrt> <mfrac> <mn> 2 </mn> <mi> &#960; </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 8 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 8 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> KelvinBei </ci> <cn type='rational'> 3 <sep /> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> -3 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <sin /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <cosh /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sinh /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <cosh /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <sinh /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinBei", "[", RowBox[List[FractionBox["3", "2"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SqrtBox[FractionBox["2", "\[Pi]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "3"]], "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]"]], "8"], "]"]]]], " ", RowBox[List["Sin", "[", FractionBox["z", SqrtBox["2"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", FractionBox["z", SqrtBox["2"]], "]"]], "+", RowBox[List["z", " ", RowBox[List["Sinh", "[", FractionBox["z", SqrtBox["2"]], "]"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]"]], "8"], "]"]], " ", RowBox[List["Cos", "[", FractionBox["z", SqrtBox["2"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["Cosh", "[", FractionBox["z", SqrtBox["2"]], "]"]]]], "-", RowBox[List["Sinh", "[", FractionBox["z", SqrtBox["2"]], "]"]]]], ")"]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02