|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.17.06.0030.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KelvinBei[-2 n - 1, z] ==
(((-1)^(n + Floor[(n - 1)/2]) 2^(-(3/2) - 2 n) z^(1 + 2 n))/(2 n + 1)!)
HypergeometricPFQ[{}, {1/2, 3/2 + n, 1 + n}, -(z^4/256)] +
(((-1)^(n + Floor[n/2]) 2^(-(7/2) - 2 n) z^(3 + 2 n))/(2 n + 2)!)
HypergeometricPFQ[{}, {3/2, 3/2 + n, 2 + n}, -(z^4/256)] /;
Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], "n"]], "-", "1"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["n", "-", "1"]], "2"], "]"]]]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "-", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox["z", RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "1"]], ")"]], "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List["1", "+", "n"]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "+", RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], "-", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox["z", RowBox[List["3", "+", RowBox[List["2", " ", "n"]]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "2"]], ")"]], "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List["2", "+", "n"]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> bei </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 256 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["n", "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["n", "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 256 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["n", "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["n", "+", "2"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> KelvinBei </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list /> <list> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 256 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list /> <list> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 256 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "n_"]], "-", "1"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["n", "-", "1"]], "2"], "]"]]]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "-", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox["z", RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List["1", "+", "n"]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], "!"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "+", RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], "-", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox["z", RowBox[List["3", "+", RowBox[List["2", " ", "n"]]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List["2", "+", "n"]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "2"]], ")"]], "!"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|