Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinBei






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinBei[nu,z] > Differential equations > Ordinary linear differential equations and wronskians > For the direct function itself





http://functions.wolfram.com/03.17.13.0007.01









  


  










Input Form





z^4 Derivative[4][w][z] + (6 - 4 r - 4 s) z^3 Derivative[3][w][z] + z^2 (7 + 12 r (-1 + s) + 6 (-2 + s) s - 2 r^2 (-2 + \[Nu]^2)) Derivative[2][w][z] + (-1 + 2 r + 2 s) z (-1 + r (2 - 4 s) - 2 (-1 + s) s + 2 r^2 \[Nu]^2) Derivative[1][w][z] + (4 r s^3 + s^4 - 4 r^3 s \[Nu]^2 - 2 r^2 s^2 (-2 + \[Nu]^2) + r^4 (a^4 z^(4 r) - 4 \[Nu]^2 + \[Nu]^4)) w[z] == 0 /; w[z] == Subscript[c, 1] z^s KelvinBer[\[Nu], a z^r] + Subscript[c, 2] z^s KelvinBei[\[Nu], a z^r] + Subscript[c, 3] z^s KelvinKer[\[Nu], a z^r] + Subscript[c, 4] z^s KelvinKei[\[Nu], a z^r]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["z", "4"], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["6", "-", RowBox[List["4", " ", "r"]], "-", RowBox[List["4", " ", "s"]]]], ")"]], SuperscriptBox["z", "3"], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["12", " ", "r", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "s"]], ")"]]]], "+", RowBox[List["6", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "s"]], ")"]], " ", "s"]], "-", RowBox[List["2", " ", SuperscriptBox["r", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["\[Nu]", "2"]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "r"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["r", " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List["4", " ", "s"]]]], ")"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "s"]], ")"]], " ", "s"]], "+", RowBox[List["2", " ", SuperscriptBox["r", "2"], " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", "r", " ", SuperscriptBox["s", "3"]]], "+", SuperscriptBox["s", "4"], "-", RowBox[List["4", " ", SuperscriptBox["r", "3"], " ", "s", " ", SuperscriptBox["\[Nu]", "2"]]], "-", RowBox[List["2", " ", SuperscriptBox["r", "2"], " ", SuperscriptBox["s", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["\[Nu]", "2"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["r", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox["z", RowBox[List["4", " ", "r"]]]]], "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]], "+", SuperscriptBox["\[Nu]", "4"]]], ")"]]]]]], ")"]], " ", RowBox[List["w", "[", "z", "]"]]]]]], " ", "\[Equal]", "0"]], "/;", " ", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], SuperscriptBox["z", "s"], RowBox[List["KelvinBer", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], SuperscriptBox["z", "s"], RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "3"], SuperscriptBox["z", "s"], RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "4"], SuperscriptBox["z", "s"], RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;4&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 6 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mtext> </mtext> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;3&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> r </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> s </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> r </mi> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> s </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> r </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> s </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> r </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> <mo> + </mo> <msup> <mi> &#957; </mi> <mn> 4 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> r </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> s </mi> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> r </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> s </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> r </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> s </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mi> r </mi> </mrow> <mo> + </mo> <msup> <mi> s </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mtext> </mtext> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> &#8290; </mo> <mrow> <msub> <mi> ber </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mtext> </mtext> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> &#8290; </mo> <mrow> <msub> <mi> bei </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 3 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> &#8290; </mo> <mrow> <msub> <mi> ker </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 4 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> &#8290; </mo> <mrow> <msub> <mi> kei </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 4 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 6 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <ci> r </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <plus /> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <ci> s </ci> <cn type='integer'> -2 </cn> </apply> <ci> s </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> r </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> r </ci> </apply> </apply> </apply> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> r </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> s </ci> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> r </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> s </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <ci> r </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> s </ci> <cn type='integer'> 3 </cn> </apply> <ci> r </ci> </apply> <apply> <power /> <ci> s </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> KelvinBer </ci> <ci> &#957; </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> KelvinBei </ci> <ci> &#957; </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> KelvinKer </ci> <ci> &#957; </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> KelvinKei </ci> <ci> &#957; </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["z_", "4"], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["6", "-", RowBox[List["4", " ", "r_"]], "-", RowBox[List["4", " ", "s_"]]]], ")"]], " ", SuperscriptBox["z_", "3"], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[SuperscriptBox["z_", "2"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["12", " ", "r_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "s_"]], ")"]]]], "+", RowBox[List["6", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "s_"]], ")"]], " ", "s_"]], "-", RowBox[List["2", " ", SuperscriptBox["r_", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["\[Nu]_", "2"]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "r_"]], "+", RowBox[List["2", " ", "s_"]]]], ")"]], " ", "z_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["r_", " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List["4", " ", "s_"]]]], ")"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "s_"]], ")"]], " ", "s_"]], "+", RowBox[List["2", " ", SuperscriptBox["r_", "2"], " ", SuperscriptBox["\[Nu]_", "2"]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", "r_", " ", SuperscriptBox["s_", "3"]]], "+", SuperscriptBox["s_", "4"], "-", RowBox[List["4", " ", SuperscriptBox["r_", "3"], " ", "s_", " ", SuperscriptBox["\[Nu]_", "2"]]], "-", RowBox[List["2", " ", SuperscriptBox["r_", "2"], " ", SuperscriptBox["s_", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["\[Nu]_", "2"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["r_", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["a_", "4"], " ", SuperscriptBox["z_", RowBox[List["4", " ", "r_"]]]]], "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]_", "2"]]], "+", SuperscriptBox["\[Nu]_", "4"]]], ")"]]]]]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", SuperscriptBox["z", "s"], " ", RowBox[List["KelvinBer", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", SuperscriptBox["z", "s"], " ", RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "3"], " ", SuperscriptBox["z", "s"], " ", RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "4"], " ", SuperscriptBox["z", "s"], " ", RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02