html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 KelvinBei

 http://functions.wolfram.com/03.17.22.0002.01

 Input Form

 MellinTransform[KelvinBei[\[Nu], t]/E^(p t), t, z] == (1/Gamma[1 + \[Nu]]) 2^(-2 - \[Nu]) p^(-z - \[Nu]) Gamma[z + \[Nu]] ((1/(p^2 (1 + \[Nu]))) (z + \[Nu]) (1 + z + \[Nu]) Cos[(3 Pi \[Nu])/4] HypergeometricPFQ[{(2 + z + \[Nu])/4, (3 + z + \[Nu])/4, 1 + (z + \[Nu])/4, (5 + z + \[Nu])/4}, {3/2, 1 + \[Nu]/2, (3 + \[Nu])/2}, -(1/p^4)] + 4 Sin[(3 Pi \[Nu])/4] HypergeometricPFQ[{(z + \[Nu])/4, (1 + z + \[Nu])/4, (2 + z + \[Nu])/4, (3 + z + \[Nu])/4}, {1/2, (1 + \[Nu])/2, 1 + \[Nu]/2}, -(1/p^4)]) /; Re[z + \[Nu]] > 0 && Re[p] > 1/Sqrt[2]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MellinTransform", "[", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "p"]], " ", "t"]]], RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]", ",", "t"]], "]"]]]], ",", "t", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]], SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "\[Nu]"]]], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "z"]], "-", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["z", "+", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["p", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]]]]], RowBox[List["(", RowBox[List["z", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "z", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["2", "+", "z", "+", "\[Nu]"]], "4"], ",", FractionBox[RowBox[List["3", "+", "z", "+", "\[Nu]"]], "4"], ",", RowBox[List["1", "+", FractionBox[RowBox[List["z", "+", "\[Nu]"]], "4"]]], ",", FractionBox[RowBox[List["5", "+", "z", "+", "\[Nu]"]], "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], ",", FractionBox[RowBox[List["3", "+", "\[Nu]"]], "2"]]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["z", "+", "\[Nu]"]], "4"], ",", FractionBox[RowBox[List["1", "+", "z", "+", "\[Nu]"]], "4"], ",", FractionBox[RowBox[List["2", "+", "z", "+", "\[Nu]"]], "4"], ",", FractionBox[RowBox[List["3", "+", "z", "+", "\[Nu]"]], "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"], ",", RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["z", "+", "\[Nu]"]], "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "p", "]"]], ">", FractionBox["1", SqrtBox["2"]]]]]]]]]]

 MathML Form

 t [ - p t bei ν ( t ) ] ( z ) 1 Γ ( ν + 1 ) 2 - ν - 2 p - z - ν Γ ( z + ν ) ( ( z + ν ) ( z + ν + 1 ) cos ( 3 π ν 4 ) p 2 ( ν + 1 ) 4 F 3 ( 1 4 ( z + ν + 2 ) , 1 4 ( z + ν + 3 ) , z + ν 4 + 1 , 1 4 ( z + ν + 5 ) ; 3 2 , ν 2 + 1 , ν + 3 2 ; - 1 p 4 ) TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "4"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["z", "+", "\[Nu]", "+", "2"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["z", "+", "\[Nu]", "+", "3"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox[RowBox[List["z", "+", "\[Nu]"]], "4"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["z", "+", "\[Nu]", "+", "5"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Nu]", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["\[Nu]", "+", "3"]], "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]] + 4 sin ( 3 π ν 4 ) 4 F 3 ( z + ν 4 , 1 4 ( z + ν + 1 ) , 1 4 ( z + ν + 2 ) , 1 4 ( z + ν + 3 ) ; 1 2 , ν + 1 2 , ν 2 + 1 ; - 1 p 4 ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "4"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["z", "+", "\[Nu]"]], "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["z", "+", "\[Nu]", "+", "1"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["z", "+", "\[Nu]", "+", "2"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["z", "+", "\[Nu]", "+", "3"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["\[Nu]", "+", "1"]], "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Nu]", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] ) /; Re ( z + ν ) > 0 Re ( p ) > 1 2 Condition Subscript t -1 p t KelvinBei ν t z 1 Gamma ν 1 -1 2 -1 ν -2 p -1 z -1 ν Gamma z ν z ν z ν 1 3 ν 4 -1 p 2 ν 1 -1 HypergeometricPFQ 1 4 z ν 2 1 4 z ν 3 z ν 4 -1 1 1 4 z ν 5 3 2 ν 2 -1 1 ν 3 2 -1 -1 1 p 4 -1 4 3 ν 4 -1 HypergeometricPFQ z ν 4 -1 1 4 z ν 1 1 4 z ν 2 1 4 z ν 3 1 2 ν 1 2 -1 ν 2 -1 1 -1 1 p 4 -1 z ν 0 p 1 2 1 2 -1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MellinTransform", "[", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "p_"]], " ", "t_"]]], " ", RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]_", ",", "t_"]], "]"]]]], ",", "t_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "\[Nu]"]]], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "z"]], "-", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["z", "+", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["z", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "z", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["2", "+", "z", "+", "\[Nu]"]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", "z", "+", "\[Nu]"]], ")"]]]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["z", "+", "\[Nu]"]], "4"]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["5", "+", "z", "+", "\[Nu]"]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], ",", FractionBox[RowBox[List["3", "+", "\[Nu]"]], "2"]]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]], RowBox[List[SuperscriptBox["p", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]]]]], "+", RowBox[List["4", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["z", "+", "\[Nu]"]], "4"], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "+", "z", "+", "\[Nu]"]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["2", "+", "z", "+", "\[Nu]"]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", "z", "+", "\[Nu]"]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"], ",", RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]]]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["z", "+", "\[Nu]"]], "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", "p", "]"]], ">", FractionBox["1", SqrtBox["2"]]]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2007-05-02