|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.14.21.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[(t^(\[Alpha] - 1) KelvinBer[t])/E^(p t), {t, 0, Infinity}] ==
(Gamma[\[Alpha]] HypergeometricPFQ[{(1 + \[Alpha])/4, (2 + \[Alpha])/4,
(3 + \[Alpha])/4, \[Alpha]/4}, {1/2, 1/2, 1}, -(1/p^4)])/p^\[Alpha] /;
Re[\[Alpha]] > 0 && (Re[p] > 1/Sqrt[2] || (Re[p] == 1/Sqrt[2] &&
Re[\[Alpha]] < 3/2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[SuperscriptBox["t", RowBox[List["\[Alpha]", "-", "1"]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "p"]], " ", "t"]]], RowBox[List["KelvinBer", "[", "t", "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[SuperscriptBox["p", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["Gamma", "[", "\[Alpha]", "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "+", "\[Alpha]"]], "4"], ",", FractionBox[RowBox[List["2", "+", "\[Alpha]"]], "4"], ",", FractionBox[RowBox[List["3", "+", "\[Alpha]"]], "4"], ",", FractionBox["\[Alpha]", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", "1"]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], ">", "0"]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "p", "]"]], ">", FractionBox["1", SqrtBox["2"]]]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "p", "]"]], "\[Equal]", FractionBox["1", SqrtBox["2"]]]], "\[And]", RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], "<", FractionBox["3", "2"]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> ∞ </mi> </msubsup> <mrow> <mrow> <msup> <mi> t </mi> <mrow> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ⁢ </mo> <mi> t </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> ber </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo>  </mo> <mrow> <msup> <mi> p </mi> <mrow> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> α </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> α </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> α </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> p </mi> <mn> 4 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "4"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["\[Alpha]", "+", "1"]], "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["\[Alpha]", "+", "2"]], "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["\[Alpha]", "+", "3"]], "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["\[Alpha]", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> α </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> p </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mfrac> <mn> 1 </mn> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> <mo> ∨ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> p </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mfrac> <mn> 1 </mn> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> α </mi> <mo> ) </mo> </mrow> <mo> < </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <ci> t </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <ci> t </ci> </apply> </apply> <apply> <ci> KelvinBer </ci> <ci> t </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <ci> Gamma </ci> <ci> α </ci> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <apply> <plus /> <ci> α </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> α </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> α </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='integer'> 1 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> p </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <real /> <ci> α </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <or /> <apply> <gt /> <apply> <real /> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <real /> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <lt /> <apply> <real /> <ci> α </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["t_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "p_"]], " ", "t_"]]], " ", RowBox[List["KelvinBer", "[", "t_", "]"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["p", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["Gamma", "[", "\[Alpha]", "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "+", "\[Alpha]"]], "4"], ",", FractionBox[RowBox[List["2", "+", "\[Alpha]"]], "4"], ",", FractionBox[RowBox[List["3", "+", "\[Alpha]"]], "4"], ",", FractionBox["\[Alpha]", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", "1"]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], ">", "0"]], "&&", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "p", "]"]], ">", FractionBox["1", SqrtBox["2"]]]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "p", "]"]], "\[Equal]", FractionBox["1", SqrtBox["2"]]]], "&&", RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], "<", FractionBox["3", "2"]]]]], ")"]]]], ")"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|