  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/03.15.06.0007.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    KelvinKei[z] == (1/2) Sum[((-1 + I)^k/(2^((3 k)/2) k!)) 
     (Sum[Binomial[k, 2 j] ((1 + I^k) (-2 I (-1)^k Pi 
            Floor[Arg[z - x]/(2 Pi)] KelvinBei[-4 j + k, x] + 
           KelvinKei[4 j - k, x]) - I (1 - I^k) 
          (-2 I (-1)^k Pi Floor[Arg[z - x]/(2 Pi)] KelvinBer[-4 j + k, x] + 
           KelvinKer[4 j - k, x])), {j, 0, Floor[k/2]}] - 
      Sum[Binomial[k, 1 + 2 j] ((1 + I^k) (-2 I (-1)^k Pi 
            Floor[Arg[z - x]/(2 Pi)] KelvinBei[-2 - 4 j + k, x] + 
           KelvinKei[2 + 4 j - k, x]) - I (1 - I^k) 
          (-2 I (-1)^k Pi Floor[Arg[z - x]/(2 Pi)] KelvinBer[-2 - 4 j + k, 
             x] + KelvinKer[2 + 4 j - k, x])), {j, 0, Floor[(k - 1)/2]}]) 
     (z - x)^k, {k, 0, Infinity}] /; Element[x, Reals] && x < 0 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKei", "[", "z", "]"]], "\[Equal]", "\n", RowBox[List[FractionBox["1", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[ImaginaryI]"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List["-", FractionBox[RowBox[List["3", "k"]], "2"]]]]]], RowBox[List["k", "!"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", FractionBox["k", "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["k", ",", RowBox[List["2", " ", "j"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "j"]], "+", "k"]], ",", "x"]], "]"]]]], "+", RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List[RowBox[List["4", " ", "j"]], "-", "k"]], ",", "x"]], "]"]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "j"]], "+", "k"]], ",", "x"]], "]"]]]], "+", RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List[RowBox[List["4", " ", "j"]], "-", "k"]], ",", "x"]], "]"]]]], ")"]]]]]], ")"]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["k", "-", "1"]], "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["k", ",", RowBox[List["1", "+", RowBox[List["2", " ", "j"]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["4", " ", "j"]], "+", "k"]], ",", "x"]], "]"]]]], "+", RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["4", " ", "j"]], "-", "k"]], ",", "x"]], "]"]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["4", " ", "j"]], "+", "k"]], ",", "x"]], "]"]]]], "+", RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["4", " ", "j"]], "-", "k"]], ",", "x"]], "]"]]]], ")"]]]]]], ")"]]]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "k"]]]]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "\[And]", RowBox[List["x", "<", "0"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mi> kei </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> + </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  </mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mi> k </mi>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List["2", " ", "j"]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msup>  <mi> ⅈ </mi>  <mi> k </mi>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> kei </mi>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msub>  <mo> ( </mo>  <mi> x </mi>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mi> x </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  <mo> ⌋ </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> bei </mi>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  </mrow>  </msub>  <mo> ( </mo>  <mi> x </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> ⅈ </mi>  <mi> k </mi>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> ker </mi>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msub>  <mo> ( </mo>  <mi> x </mi>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mi> x </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  <mo> ⌋ </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> ber </mi>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  </mrow>  </msub>  <mo> ( </mo>  <mi> x </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msup>  <mi> ⅈ </mi>  <mi> k </mi>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> kei </mi>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <mo> ( </mo>  <mi> x </mi>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mi> x </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  <mo> ⌋ </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> bei </mi>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 4 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> + </mo>  <mi> k </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </msub>  <mo> ( </mo>  <mi> x </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> ⅈ </mi>  <mi> k </mi>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> ker </mi>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <mo> ( </mo>  <mi> x </mi>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mi> x </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  <mo> ⌋ </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> ber </mi>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 4 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> + </mo>  <mi> k </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </msub>  <mo> ( </mo>  <mi> x </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mi> x </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> x </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℝ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> x </mi>  <mo> < </mo>  <mn> 0 </mn>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> KelvinKei </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> k </ci>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> k </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <ci> k </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Binomial </ci>  <ci> k </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> j </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <imaginaryi />  <ci> k </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <ci> KelvinKei </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  <ci> x </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <pi />  <apply>  <floor />  <apply>  <times />  <apply>  <arg />  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> x </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> KelvinBei </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <ci> x </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <imaginaryi />  <ci> k </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <ci> KelvinKer </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  <ci> x </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <pi />  <apply>  <floor />  <apply>  <times />  <apply>  <arg />  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> x </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> KelvinBer </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <ci> x </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Binomial </ci>  <ci> k </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <imaginaryi />  <ci> k </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <ci> KelvinKei </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <ci> x </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <pi />  <apply>  <floor />  <apply>  <times />  <apply>  <arg />  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> x </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> KelvinBei </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -4 </cn>  <ci> j </ci>  </apply>  <ci> k </ci>  <cn type='integer'> -2 </cn>  </apply>  <ci> x </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <imaginaryi />  <ci> k </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <ci> KelvinKer </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <ci> x </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <pi />  <apply>  <floor />  <apply>  <times />  <apply>  <arg />  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> x </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> KelvinBer </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -4 </cn>  <ci> j </ci>  </apply>  <ci> k </ci>  <cn type='integer'> -2 </cn>  </apply>  <ci> x </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> x </ci>  </apply>  </apply>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <in />  <ci> x </ci>  <reals />  </apply>  <apply>  <lt />  <ci> x </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKei", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[ImaginaryI]"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["3", " ", "k"]], ")"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", FractionBox["k", "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["k", ",", RowBox[List["2", " ", "j"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "j"]], "+", "k"]], ",", "x"]], "]"]]]], "+", RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List[RowBox[List["4", " ", "j"]], "-", "k"]], ",", "x"]], "]"]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "j"]], "+", "k"]], ",", "x"]], "]"]]]], "+", RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List[RowBox[List["4", " ", "j"]], "-", "k"]], ",", "x"]], "]"]]]], ")"]]]]]], ")"]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["k", "-", "1"]], "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["k", ",", RowBox[List["1", "+", RowBox[List["2", " ", "j"]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["4", " ", "j"]], "+", "k"]], ",", "x"]], "]"]]]], "+", RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["4", " ", "j"]], "-", "k"]], ",", "x"]], "]"]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["4", " ", "j"]], "+", "k"]], ",", "x"]], "]"]]]], "+", RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["4", " ", "j"]], "-", "k"]], ",", "x"]], "]"]]]], ")"]]]]]], ")"]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "k"]]], RowBox[List["k", "!"]]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "&&", RowBox[List["x", "<", "0"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |