Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinKei






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinKei[z] > Series representations > Generalized power series > Expansions at z==0 > For the function itself





http://functions.wolfram.com/03.15.06.0010.01









  


  










Input Form





KelvinKei[z] \[Proportional] (-(Pi/4)) (1 - z^4/64 + z^8/147456 + \[Ellipsis]) - (z^2/4) Log[z/2] (1 - z^4/576 + z^8/3686400 + \[Ellipsis]) + (z^2/4) (1 - EulerGamma + ((-11 + 6 EulerGamma) z^4)/3456 - ((-137 + 60 EulerGamma) z^8)/221184000 + \[Ellipsis]) /; (z -> 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKei", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["\[Pi]", "4"]]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], "64"], "+", FractionBox[SuperscriptBox["z", "8"], "147456"], "+", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[FractionBox[SuperscriptBox["z", "2"], "4"], " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], "576"], "+", FractionBox[SuperscriptBox["z", "8"], "3686400"], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox[SuperscriptBox["z", "2"], "4"], RowBox[List["(", RowBox[List["1", "-", "EulerGamma", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "11"]], "+", RowBox[List["6", " ", "EulerGamma"]]]], ")"]], " ", SuperscriptBox["z", "4"]]], "3456"], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "137"]], "+", RowBox[List["60", " ", "EulerGamma"]]]], ")"]], " ", SuperscriptBox["z", "8"]]], "221184000"], "+", "\[Ellipsis]"]], ")"]]]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> kei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#960; </mi> <mn> 4 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 64 </mn> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 8 </mn> </msup> <mn> 147456 </mn> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mtext> </mtext> </mrow> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 576 </mn> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 8 </mn> </msup> <mn> 3686400 </mn> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mtext> </mtext> </mrow> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> &#8509; </mi> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 11 </mn> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> &#8509; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mn> 3456 </mn> </mfrac> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[DoubledGamma]&quot;, &quot;+&quot;, FractionBox[RowBox[List[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;-&quot;, &quot;11&quot;]], &quot;+&quot;, RowBox[List[&quot;6&quot;, &quot; &quot;, TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]]]]]], &quot;)&quot;]], &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;4&quot;]]], &quot;3456&quot;]]], Function[List[], EulerGamma]] </annotation> </semantics> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 137 </mn> </mrow> <mo> + </mo> <mrow> <mn> 60 </mn> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mn> 221184000 </mn> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> KelvinKei </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 64 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <cn type='integer'> 147456 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 576 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <cn type='integer'> 3686400 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <eulergamma /> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> -137 </cn> <apply> <times /> <cn type='integer'> 60 </cn> <eulergamma /> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <cn type='integer'> 221184000 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKei", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["-", "\[Pi]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], "64"], "+", FractionBox[SuperscriptBox["z", "8"], "147456"], "+", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox["z", "2"], " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], "576"], "+", FractionBox[SuperscriptBox["z", "8"], "3686400"], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List["1", "-", "EulerGamma", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "11"]], "+", RowBox[List["6", " ", "EulerGamma"]]]], ")"]], " ", SuperscriptBox["z", "4"]]], "3456"], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "137"]], "+", RowBox[List["60", " ", "EulerGamma"]]]], ")"]], " ", SuperscriptBox["z", "8"]]], "221184000"], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02