| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/03.15.13.0005.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | g[z]^4 h[z]^4 Derivative[1][g][z]^3 Derivative[4][w][z] + 
   2 g[z]^3 h[z]^3 Derivative[1][g][z]^2 
    (-2 g[z] Derivative[1][g][z] Derivative[1][h][z] + 
     h[z] (Derivative[1][g][z]^2 - 3 g[z] Derivative[2][g][z])) 
    Derivative[3][w][z] + g[z]^2 h[z]^2 Derivative[1][g][z] 
    (12 g[z]^2 Derivative[1][g][z]^2 Derivative[1][h][z]^2 - 
     6 g[z] h[z] Derivative[1][g][z] (Derivative[1][g][z]^2 
        Derivative[1][h][z] - 3 g[z] Derivative[1][h][z] 
        Derivative[2][g][z] + g[z] Derivative[1][g][z] Derivative[2][h][z]) - 
     h[z]^2 (Derivative[1][g][z]^4 + 6 g[z] Derivative[1][g][z]^2 
        Derivative[2][g][z] - 15 g[z]^2 Derivative[2][g][z]^2 + 
       4 g[z]^2 Derivative[1][g][z] Derivative[3][g][z])) 
    Derivative[2][w][z] + g[z] h[z] (-24 g[z]^3 Derivative[1][g][z]^3 
      Derivative[1][h][z]^3 + 12 g[z]^2 h[z] Derivative[1][g][z]^2 
      Derivative[1][h][z] (Derivative[1][g][z]^2 Derivative[1][h][z] - 
       3 g[z] Derivative[1][h][z] Derivative[2][g][z] + 
       2 g[z] Derivative[1][g][z] Derivative[2][h][z]) + 
     2 g[z] h[z]^2 Derivative[1][g][z] (Derivative[1][g][z]^4 
        Derivative[1][h][z] - 15 g[z]^2 Derivative[1][h][z] 
        Derivative[2][g][z]^2 - 3 g[z] Derivative[1][g][z]^3 
        Derivative[2][h][z] + g[z]^2 Derivative[1][g][z] 
        (9 Derivative[2][g][z] Derivative[2][h][z] + 4 Derivative[1][h][z] 
          Derivative[3][g][z]) - 2 g[z] Derivative[1][g][z]^2 
        (-3 Derivative[1][h][z] Derivative[2][g][z] + 
         g[z] Derivative[3][h][z])) + h[z]^3 (Derivative[1][g][z]^6 + 
       g[z] Derivative[1][g][z]^4 Derivative[2][g][z] - 
       15 g[z]^3 Derivative[2][g][z]^3 - 2 g[z]^2 Derivative[1][g][z]^3 
        Derivative[3][g][z] + 10 g[z]^3 Derivative[1][g][z] 
        Derivative[2][g][z] Derivative[3][g][z] + 
       g[z]^2 Derivative[1][g][z]^2 (6 Derivative[2][g][z]^2 - 
         g[z] Derivative[4][g][z]))) Derivative[1][w][z] + 
   (g[z]^4 h[z]^4 Derivative[1][g][z]^7 + g[z]^2 h[z]^2 Derivative[1][g][z] 
      (-2 Derivative[1][h][z]^2 + h[z] Derivative[2][h][z]) 
      (Derivative[1][g][z]^4 + 6 g[z] Derivative[1][g][z]^2 
        Derivative[2][g][z] - 15 g[z]^2 Derivative[2][g][z]^2 + 
       4 g[z]^2 Derivative[1][g][z] Derivative[3][g][z]) - 
     2 g[z]^3 h[z] Derivative[1][g][z]^2 (Derivative[1][g][z]^2 - 
       3 g[z] Derivative[2][g][z]) (6 Derivative[1][h][z]^3 - 
       6 h[z] Derivative[1][h][z] Derivative[2][h][z] + 
       h[z]^2 Derivative[3][h][z]) - g[z] h[z]^3 Derivative[1][h][z] 
      (Derivative[1][g][z]^6 + g[z] Derivative[1][g][z]^4 
        Derivative[2][g][z] - 15 g[z]^3 Derivative[2][g][z]^3 - 
       2 g[z]^2 Derivative[1][g][z]^3 Derivative[3][g][z] + 
       10 g[z]^3 Derivative[1][g][z] Derivative[2][g][z] 
        Derivative[3][g][z] + g[z]^2 Derivative[1][g][z]^2 
        (6 Derivative[2][g][z]^2 - g[z] Derivative[4][g][z])) + 
     g[z]^4 Derivative[1][g][z]^3 (24 Derivative[1][h][z]^4 - 
       36 h[z] Derivative[1][h][z]^2 Derivative[2][h][z] + 
       8 h[z]^2 Derivative[1][h][z] Derivative[3][h][z] + 
       h[z]^2 (6 Derivative[2][h][z]^2 - h[z] Derivative[4][h][z]))) w[z] == 
  0 /; w[z] == Subscript[c, 1] h[z] KelvinBer[g[z]] + 
   Subscript[c, 2] h[z] KelvinBei[g[z]] + Subscript[c, 3] h[z] 
    KelvinKer[g[z]] + Subscript[c, 4] h[z] KelvinKei[g[z]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "4"], " ", SuperscriptBox[RowBox[List["h", "[", "z", "]"]], "4"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "3"], " ", SuperscriptBox[RowBox[List["h", "[", "z", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["h", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], "-", RowBox[List["3", " ", RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List["h", "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["12", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "-", RowBox[List["6", " ", RowBox[List["g", "[", "z", "]"]], " ", RowBox[List["h", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List["3", " ", RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["h", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"], "+", RowBox[List["6", " ", RowBox[List["g", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]]]], ")"]], RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], " ", "+", RowBox[List[RowBox[List["g", "[", "z", "]"]], " ", RowBox[List["h", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "24"]], " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"]]], "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", RowBox[List["h", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List["3", " ", RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["g", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List["h", "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List["(", " ", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["g", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["9", " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List["4", " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]], "-", RowBox[List["2", " ", RowBox[List["g", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["h", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["h", "[", "z", "]"]], "3"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "6"], "+", RowBox[List[RowBox[List["g", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List["10", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "-", RowBox[List[RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], " ", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "4"], " ", SuperscriptBox[RowBox[List["h", "[", "z", "]"]], "4"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "7"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List["h", "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List[RowBox[List["h", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"], "+", RowBox[List["6", " ", RowBox[List["g", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "3"], " ", RowBox[List["h", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], "-", RowBox[List["3", " ", RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"]]], "-", RowBox[List["6", " ", RowBox[List["h", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["h", "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["h", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["g", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List["h", "[", "z", "]"]], "3"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "6"], "+", RowBox[List[RowBox[List["g", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List["10", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "-", RowBox[List[RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "4"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["24", " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"]]], "-", RowBox[List["36", " ", RowBox[List["h", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List["8", " ", SuperscriptBox[RowBox[List["h", "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["h", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["h", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "-", RowBox[List[RowBox[List["h", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["h", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], RowBox[List["w", "[", "z", "]"]]]]]], " ", "\[Equal]", "0"]], "/;", "  ", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], RowBox[List["h", "[", "z", "]"]], RowBox[List["KelvinBer", "[", RowBox[List["g", "[", "z", "]"]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], RowBox[List["h", "[", "z", "]"]], RowBox[List["KelvinBei", "[", RowBox[List["g", "[", "z", "]"]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "3"], RowBox[List["h", "[", "z", "]"]], RowBox[List["KelvinKer", "[", RowBox[List["g", "[", "z", "]"]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "4"], RowBox[List["h", "[", "z", "]"]], RowBox[List["KelvinKei", "[", RowBox[List["g", "[", "z", "]"]], "]"]]]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mrow>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> w </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 4 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "4", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> w </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  <mo> + </mo>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 15 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> w </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 6 </mn>  </msup>  <mo> + </mo>  <mrow>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 4 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "4", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 10 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 15 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 9 </mn>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 15 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 24 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 7 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 24 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 36 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> h </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 4 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "4", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  <mo> + </mo>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 15 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> h </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 6 </mn>  </msup>  <mo> + </mo>  <mrow>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 4 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "4", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 10 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 15 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> w </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mtext>   </mtext>  <mo>  </mo>  <mn> 0 </mn>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> w </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mrow>  <mrow>  <msub>  <mi> c </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> ber </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <msub>  <mi> c </mi>  <mn> 2 </mn>  </msub>  <mo> ⁢ </mo>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> bei </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <msub>  <mi> c </mi>  <mn> 3 </mn>  </msub>  <mo> ⁢ </mo>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> ker </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <msub>  <mi> c </mi>  <mn> 4 </mn>  </msub>  <mo> ⁢ </mo>  <mrow>  <mi> h </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> kei </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 4 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 15 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 12 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 6 </cn>  </apply>  <apply>  <times />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 4 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 10 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 15 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 9 </cn>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 15 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 12 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 24 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <power />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 7 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 24 </cn>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 36 </cn>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <power />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 4 </cn>  </degree>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 15 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <power />  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 6 </cn>  </apply>  <apply>  <times />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 4 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 10 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 15 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <eq />  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <apply>  <ci> KelvinBer </ci>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <apply>  <ci> KelvinBei </ci>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <apply>  <ci> KelvinKer </ci>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <ci> h </ci>  <ci> z </ci>  </apply>  <apply>  <ci> KelvinKei </ci>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "4"], " ", SuperscriptBox[RowBox[List["h", "[", "z_", "]"]], "4"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "3"], " ", SuperscriptBox[RowBox[List["h", "[", "z_", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["h", "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], "-", RowBox[List["3", " ", RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List["h", "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["12", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "-", RowBox[List["6", " ", RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List["h", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List["3", " ", RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["h", "[", "z_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"], "+", RowBox[List["6", " ", RowBox[List["g", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List["h", "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "24"]], " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"]]], "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", RowBox[List["h", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List["3", " ", RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["g", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List["h", "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["g", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["9", " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["4", " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]], "-", RowBox[List["2", " ", RowBox[List["g", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["h", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["h", "[", "z_", "]"]], "3"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "6"], "+", RowBox[List[RowBox[List["g", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["10", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "-", RowBox[List[RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "4"], " ", SuperscriptBox[RowBox[List["h", "[", "z_", "]"]], "4"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "7"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List["h", "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List[RowBox[List["h", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"], "+", RowBox[List["6", " ", RowBox[List["g", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "3"], " ", RowBox[List["h", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], "-", RowBox[List["3", " ", RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"]]], "-", RowBox[List["6", " ", RowBox[List["h", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["h", "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["h", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["g", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List["h", "[", "z_", "]"]], "3"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "6"], "+", RowBox[List[RowBox[List["g", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["10", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "-", RowBox[List[RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "4"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["24", " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"]]], "-", RowBox[List["36", " ", RowBox[List["h", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["8", " ", SuperscriptBox[RowBox[List["h", "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["h", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["h", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["h", "[", "z_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List[SuperscriptBox["h", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "-", RowBox[List[RowBox[List["h", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["h", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", RowBox[List["h", "[", "z", "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List["g", "[", "z", "]"]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", RowBox[List["h", "[", "z", "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List["g", "[", "z", "]"]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "3"], " ", RowBox[List["h", "[", "z", "]"]], " ", RowBox[List["KelvinKer", "[", RowBox[List["g", "[", "z", "]"]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "4"], " ", RowBox[List["h", "[", "z", "]"]], " ", RowBox[List["KelvinKei", "[", RowBox[List["g", "[", "z", "]"]], "]"]]]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |