|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.15.20.0007.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[KelvinKei[z], {z, \[Alpha]}] ==
((-2^(-(3/2) + 2 \[Alpha])) Pi^3 HypergeometricPFQRegularized[{1/4, 3/4},
{1/2, (1 - \[Alpha])/4, (2 - \[Alpha])/4, (3 - \[Alpha])/4,
1 - \[Alpha]/4}, -(z^4/256)])/z^\[Alpha] +
I 2^(-(7/2) + 2 \[Alpha]) Pi^2 z^(2 - \[Alpha]) Log[2]
HypergeometricPFQRegularized[{3/4, 5/4}, {3/2, 3/4 - \[Alpha]/4,
1 - \[Alpha]/4, 5/4 - \[Alpha]/4, 3/2 - \[Alpha]/4}, -(z^4/256)] +
((I z^(2 - \[Alpha]))/4) Sum[((-1)^k FDLogConstant[z, 4 k + 2, \[Alpha]]
z^(4 k))/(2^(4 k) (1 + 2 k)!^2), {k, 0, Infinity}] +
I z^(2 - \[Alpha]) Sum[(((-1)^k (4 k + 2)! PolyGamma[2 + 2 k])/
(2^(4 k) ((1 + 2 k)!^2 Gamma[3 + 4 k - \[Alpha]]))) z^(4 k),
{k, 0, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["KelvinKei", "[", "z", "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", RowBox[List["2", " ", "\[Alpha]"]]]]]]], " ", SuperscriptBox["\[Pi]", "3"], " ", SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["1", "-", "\[Alpha]"]], "4"], ",", FractionBox[RowBox[List["2", "-", "\[Alpha]"]], "4"], ",", FractionBox[RowBox[List["3", "-", "\[Alpha]"]], "4"], ",", RowBox[List["1", "-", FractionBox["\[Alpha]", "4"]]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], "+", RowBox[List["2", " ", "\[Alpha]"]]]]], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["2", "-", "\[Alpha]"]]], " ", RowBox[List["Log", "[", "2", "]"]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "4"], ",", FractionBox["5", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List[FractionBox["3", "4"], "-", FractionBox["\[Alpha]", "4"]]], ",", RowBox[List["1", "-", FractionBox["\[Alpha]", "4"]]], ",", RowBox[List[FractionBox["5", "4"], "-", FractionBox["\[Alpha]", "4"]]], ",", RowBox[List[FractionBox["3", "2"], "-", FractionBox["\[Alpha]", "4"]]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", RowBox[List["2", "-", "\[Alpha]"]]]]], "4"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], SuperscriptBox["2", RowBox[List[RowBox[List["-", "4"]], " ", "k"]]], " ", RowBox[List["FDLogConstant", "[", RowBox[List["z", ",", RowBox[List[RowBox[List["4", "k"]], "+", "2"]], ",", "\[Alpha]"]], "]"]], SuperscriptBox["z", RowBox[List["4", "k"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], "!"]], ")"]], "2"]]]]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", RowBox[List["2", "-", "\[Alpha]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "4"]], " ", "k"]]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", "k"]], "+", "2"]], ")"]], "!"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["2", "+", RowBox[List["2", " ", "k"]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], "!"]], ")"]], "2"], " ", RowBox[List["Gamma", "[", RowBox[List["3", "+", RowBox[List["4", " ", "k"]], "-", "\[Alpha]"]], "]"]]]]], SuperscriptBox["z", RowBox[List["4", "k"]]]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> α </mi> </msup> <mrow> <mi> kei </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mi> α </mi> </msup> </mrow> </mfrac> <mo>  </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> α </mi> </mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> log </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 5 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 256 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox[OverscriptBox["F", "~"], "5"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "4"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["5", "4"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["3", "4"], "-", FractionBox["\[Alpha]", "4"]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", FractionBox["\[Alpha]", "4"]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["5", "4"], "-", FractionBox["\[Alpha]", "4"]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["3", "2"], "-", FractionBox["\[Alpha]", "4"]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> α </mi> </mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 5 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> α </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> α </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> - </mo> <mi> α </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 256 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox[OverscriptBox["F", "~"], "5"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "4"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["3", "4"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["1", "-", "\[Alpha]"]], "4"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["2", "-", "\[Alpha]"]], "4"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["3", "-", "\[Alpha]"]], "4"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", FractionBox["\[Alpha]", "4"]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> α </mi> </mrow> </msup> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msubsup> <mi> ℱ𝒞 </mi> <mi> log </mi> <mrow> <mo> ( </mo> <mi> α </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> α </ci> </degree> </bvar> <apply> <ci> KelvinKei </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> α </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> <imaginaryi /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <ci> log </ci> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='rational'> 3 <sep /> 4 </cn> <cn type='rational'> 5 <sep /> 4 </cn> </list> <list> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <plus /> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='rational'> 5 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 256 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> α </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='rational'> 1 <sep /> 4 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 256 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -4 </cn> <ci> k </ci> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -4 </cn> <ci> k </ci> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ℱ𝒞 </ci> <ci> log </ci> </apply> <ci> α </ci> </apply> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["KelvinKei", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", RowBox[List["2", " ", "\[Alpha]"]]]]]]], " ", SuperscriptBox["\[Pi]", "3"], " ", SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["1", "-", "\[Alpha]"]], "4"], ",", FractionBox[RowBox[List["2", "-", "\[Alpha]"]], "4"], ",", FractionBox[RowBox[List["3", "-", "\[Alpha]"]], "4"], ",", RowBox[List["1", "-", FractionBox["\[Alpha]", "4"]]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], "+", RowBox[List["2", " ", "\[Alpha]"]]]]], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["2", "-", "\[Alpha]"]]], " ", RowBox[List["Log", "[", "2", "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "4"], ",", FractionBox["5", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List[FractionBox["3", "4"], "-", FractionBox["\[Alpha]", "4"]]], ",", RowBox[List["1", "-", FractionBox["\[Alpha]", "4"]]], ",", RowBox[List[FractionBox["5", "4"], "-", FractionBox["\[Alpha]", "4"]]], ",", RowBox[List[FractionBox["3", "2"], "-", FractionBox["\[Alpha]", "4"]]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", RowBox[List["2", "-", "\[Alpha]"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "4"]], " ", "k"]]], " ", RowBox[List["FDLogConstant", "[", RowBox[List["z", ",", RowBox[List[RowBox[List["4", " ", "k"]], "+", "2"]], ",", "\[Alpha]"]], "]"]], " ", SuperscriptBox["z", RowBox[List["4", " ", "k"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], "!"]], ")"]], "2"]]]]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", RowBox[List["2", "-", "\[Alpha]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "4"]], " ", "k"]]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", "k"]], "+", "2"]], ")"]], "!"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["2", "+", RowBox[List["2", " ", "k"]]]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["4", " ", "k"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], "!"]], ")"]], "2"], " ", RowBox[List["Gamma", "[", RowBox[List["3", "+", RowBox[List["4", " ", "k"]], "-", "\[Alpha]"]], "]"]]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|