html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 KelvinKei

 http://functions.wolfram.com/03.19.03.0018.01

 Input Form

 KelvinKei[-(1/2), z] == (1/(E^(z/Sqrt[2]) Sqrt[z])) Sqrt[Pi/2] Cos[z/Sqrt[2] + (3 Pi)/8]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["z", " "]], SqrtBox["2"]]]]], SqrtBox["z"]], SqrtBox[FractionBox["\[Pi]", "2"]], RowBox[List["Cos", "[", RowBox[List[FractionBox["z", SqrtBox["2"]], "+", FractionBox[RowBox[List["3", "\[Pi]"]], "8"]]], "]"]], " "]]]]]]

 MathML Form

 kei - 1 2 ( z ) 1 z - z 2 π 2 cos ( z 2 + 3 π 8 ) KelvinKei -1 1 2 z 1 z 1 2 -1 -1 z 2 1 2 -1 2 -1 1 2 z 2 1 2 -1 3 8 -1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", SqrtBox[FractionBox["\[Pi]", "2"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["z", SqrtBox["2"]], "+", FractionBox[RowBox[List["3", " ", "\[Pi]"]], "8"]]], "]"]]]], SqrtBox["z"]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2007-05-02