|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.19.03.0036.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KelvinKei[14/3, z] ==
-((-(1/3))^(1/6) Pi ((144 + 144 I) 2^(1/6) 3^(1/3) z (110 I + 9 z^2)
((-2^(1/3)) (-I + Sqrt[3]) z^(2/3) + 2 ((1 + I) z)^(2/3))
AiryAi[(-(1/2)) 3^(2/3) ((1 + I) z)^(2/3)] + (144 + 144 I) 2^(1/6)
3^(1/3) z (-110 I 2^(1/3) (-I + Sqrt[3]) z^(2/3) +
9 2^(1/3) (-I + Sqrt[3]) z^(8/3) - 110 (I + Sqrt[3])
((1 + I) z)^(2/3) - 9 (-1)^(1/6) ((1 + I) z)^(8/3))
AiryAi[(1/2) 3^(2/3) ((1 + I) z)^(2/3)] -
(1/z^(1/3)) (6 ((1 + I) z)^(1/3) (14080 I 2^(1/6) z^(1/3) +
4320 2^(1/6) z^(7/3) - 81 I 2^(1/6) z^(13/3) -
14080 (-1)^(1/12) ((1 + I) z)^(1/3) + 4320 (-1)^(7/12) z^2
((1 + I) z)^(1/3) + 81 (-1)^(1/12) z^4 ((1 + I) z)^(1/3))
AiryAiPrime[(-(1/2)) 3^(2/3) ((1 + I) z)^(2/3)]) -
(1/((1 + I) z)^(1/3)) (3 ((-28160 - 28160 I) (-1)^(1/12) z^(2/3) -
(8640 + 8640 I) (-1)^(7/12) z^(8/3) + (162 + 162 I) (-1)^(1/12)
z^(14/3) - 14080 2^(1/6) (I + Sqrt[3]) ((1 + I) z)^(2/3) +
4320 2^(1/6) (1 - I Sqrt[3]) z^2 ((1 + I) z)^(2/3) +
81 2^(1/6) (I + Sqrt[3]) z^4 ((1 + I) z)^(2/3))
AiryAiPrime[(1/2) 3^(2/3) ((1 + I) z)^(2/3)]) +
(48 + 48 I) 2^(1/6) 3^(1/3) z (110 I + 9 z^2)
(2^(1/3) (3 - I Sqrt[3]) z^(2/3) + 2 Sqrt[3] ((1 + I) z)^(2/3))
AiryBi[(-(1/2)) 3^(2/3) ((1 + I) z)^(2/3)] + (1/((1 + I) z)^(4/3))
(96 I 2^(1/6) 3^(1/3) z^(8/3) ((110 - 110 I) (-3 I + Sqrt[3]) z^(1/3) +
(18 - 18 I) (-1)^(1/6) Sqrt[3] z^(7/3) + 110 2^(1/3) (3 I + Sqrt[3])
((1 + I) z)^(1/3) + (9 (3 I + Sqrt[3]) ((1 + I) z)^(7/3))/2^(2/3))
AiryBi[(1/2) 3^(2/3) ((1 + I) z)^(2/3)]) + (1/((1 + I) z)^(1/3))
(2 Sqrt[3] ((-14080 - 14080 I) (-1)^(1/12) z^(2/3) +
(4320 + 4320 I) (-1)^(7/12) z^(8/3) + (81 + 81 I) (-1)^(1/12)
z^(14/3) - 14080 I 2^(1/6) ((1 + I) z)^(2/3) -
4320 2^(1/6) z^2 ((1 + I) z)^(2/3) + 81 I 2^(1/6) z^4
((1 + I) z)^(2/3)) AiryBiPrime[(-(1/2)) 3^(2/3)
((1 + I) z)^(2/3)]) + (1/((1 + I) z)^(1/3))
(((-28160 - 28160 I) (-1)^(1/12) Sqrt[3] z^(2/3) -
(8640 + 8640 I) (-1)^(7/12) Sqrt[3] z^(8/3) +
(162 + 162 I) (-1)^(1/12) Sqrt[3] z^(14/3) +
14080 2^(1/6) (3 + I Sqrt[3]) ((1 + I) z)^(2/3) -
4320 2^(1/6) (-3 I + Sqrt[3]) z^2 ((1 + I) z)^(2/3) -
81 I 2^(1/6) (-3 I + Sqrt[3]) z^4 ((1 + I) z)^(2/3))
AiryBiPrime[(1/2) 3^(2/3) ((1 + I) z)^(2/3)])))/
(486 2^(5/6) z^(10/3) ((1 + I) z)^(5/3))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["KelvinKei", "[", RowBox[List[FractionBox["14", "3"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "3"]]], ")"]], RowBox[List["1", "/", "6"]]], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["144", "+", RowBox[List["144", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["110", " ", "\[ImaginaryI]"]], "+", RowBox[List["9", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["2", RowBox[List["1", "/", "3"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["144", "+", RowBox[List["144", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "110"]], " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["9", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]]]], "-", RowBox[List["110", " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "-", RowBox[List["9", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "6"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["8", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAi", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "-", RowBox[List[FractionBox["1", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]], RowBox[List["(", RowBox[List["6", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["14080", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "+", RowBox[List["4320", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["7", "/", "3"]]]]], "-", RowBox[List["81", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["13", "/", "3"]]]]], "-", RowBox[List["14080", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List["4320", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "12"]]], " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List["81", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SuperscriptBox["z", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]], RowBox[List["(", RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "28160"]], "-", RowBox[List["28160", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["8640", "+", RowBox[List["8640", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "12"]]], " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["162", "+", RowBox[List["162", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SuperscriptBox["z", RowBox[List["14", "/", "3"]]]]], "-", RowBox[List["14080", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["4320", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["81", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["48", "+", RowBox[List["48", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["110", " ", "\[ImaginaryI]"]], "+", RowBox[List["9", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["2", " ", SqrtBox["3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["4", "/", "3"]]]], RowBox[List["(", RowBox[List["96", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["110", "-", RowBox[List["110", " ", "\[ImaginaryI]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["18", "-", RowBox[List["18", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "6"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["7", "/", "3"]]]]], "+", RowBox[List["110", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", FractionBox[RowBox[List["9", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["7", "/", "3"]]]]], SuperscriptBox["2", RowBox[List["2", "/", "3"]]]]]], ")"]], " ", RowBox[List["AiryBi", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]], RowBox[List["(", RowBox[List["2", " ", SqrtBox["3"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "14080"]], "-", RowBox[List["14080", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["4320", "+", RowBox[List["4320", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "12"]]], " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["81", "+", RowBox[List["81", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SuperscriptBox["z", RowBox[List["14", "/", "3"]]]]], "-", RowBox[List["14080", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "-", RowBox[List["4320", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["81", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "28160"]], "-", RowBox[List["28160", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["8640", "+", RowBox[List["8640", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "12"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["162", "+", RowBox[List["162", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["14", "/", "3"]]]]], "+", RowBox[List["14080", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "-", RowBox[List["4320", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "-", RowBox[List["81", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], ")"]]]]]], ")"]]]], ")"]]]], "/", RowBox[List["(", RowBox[List["486", " ", SuperscriptBox["2", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["10", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["5", "/", "3"]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> kei </mi> <mfrac> <mn> 14 </mn> <mn> 3 </mn> </mfrac> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> π </mi> <mrow> <mn> 486 </mn> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 10 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <mroot> <mn> 3 </mn> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 144 </mn> <mo> + </mo> <mrow> <mn> 144 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 110 </mn> </mrow> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 8 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 110 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 8 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Ai </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <mroot> <mn> 3 </mn> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 144 </mn> <mo> + </mo> <mrow> <mn> 144 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 110 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Ai </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mroot> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 3 </mn> </mroot> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 12 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 28160 </mn> </mrow> <mo> - </mo> <mrow> <mn> 28160 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 8640 </mn> <mo> + </mo> <mrow> <mn> 8640 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 12 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 8 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 12 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 162 </mn> <mo> + </mo> <mrow> <mn> 162 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 14 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 81 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4320 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 14080 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> Ai </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 14080 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <mn> 4320 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 81 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 81 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 12 </mn> </mroot> <mo> ⁢ </mo> <mroot> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4320 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 12 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 14080 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 12 </mn> </mroot> <mo> ⁢ </mo> <mroot> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 3 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> Ai </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 4 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 96 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <mroot> <mn> 3 </mn> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 8 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 110 </mn> <mo> - </mo> <mrow> <mn> 110 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 18 </mn> <mo> - </mo> <mrow> <mn> 18 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 110 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Bi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <mroot> <mn> 3 </mn> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 48 </mn> <mo> + </mo> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 110 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Bi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mroot> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 3 </mn> </mroot> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 12 </mn> </mroot> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 28160 </mn> </mrow> <mo> - </mo> <mrow> <mn> 28160 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 8640 </mn> <mo> + </mo> <mrow> <mn> 8640 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 12 </mn> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 8 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 12 </mn> </mroot> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 162 </mn> <mo> + </mo> <mrow> <mn> 162 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 14 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 81 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4320 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14080 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> Bi </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mroot> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 3 </mn> </mroot> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 12 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 14080 </mn> </mrow> <mo> - </mo> <mrow> <mn> 14080 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 12 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 4320 </mn> <mo> + </mo> <mrow> <mn> 4320 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 8 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 12 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 81 </mn> <mo> + </mo> <mrow> <mn> 81 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 14 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 81 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4320 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 14080 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> Bi </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> KelvinKei </ci> <cn type='rational'> 14 <sep /> 3 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 486 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 5 <sep /> 6 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 10 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 5 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='complex-cartesian'> 144 <sep /> 144 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -110 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 8 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 110 </cn> <apply> <plus /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 8 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> AiryAi </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='complex-cartesian'> 144 <sep /> 144 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 110 </cn> <imaginaryi /> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> AiryAi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 12 </cn> </apply> <cn type='complex-cartesian'> -28160 <sep /> -28160 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='complex-cartesian'> 8640 <sep /> 8640 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 12 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 8 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 12 </cn> </apply> <cn type='complex-cartesian'> 162 <sep /> 162 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 14 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 81 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <plus /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4320 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 14080 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <plus /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> AiryAiPrime </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 14080 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4320 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 81 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 81 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 12 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4320 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 12 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 14080 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 12 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> AiryAiPrime </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 4 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 96 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 8 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -3 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='complex-cartesian'> 110 <sep /> -110 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='complex-cartesian'> 18 <sep /> -18 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 110 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 7 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> AiryBi </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='complex-cartesian'> 48 <sep /> 48 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 110 </cn> <imaginaryi /> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <ci> AiryBi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 12 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='complex-cartesian'> -28160 <sep /> -28160 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='complex-cartesian'> 8640 <sep /> 8640 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 12 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 8 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 12 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='complex-cartesian'> 162 <sep /> 162 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 14 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 81 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -3 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4320 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -3 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 14080 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <ci> AiryBiPrime </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 12 </cn> </apply> <cn type='complex-cartesian'> -14080 <sep /> -14080 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 12 </cn> </apply> <cn type='complex-cartesian'> 4320 <sep /> 4320 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 8 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 12 </cn> </apply> <cn type='complex-cartesian'> 81 <sep /> 81 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 14 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 81 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <imaginaryi /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4320 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 14080 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> AiryBiPrime </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKei", "[", RowBox[List[FractionBox["14", "3"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "3"]]], ")"]], RowBox[List["1", "/", "6"]]], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["144", "+", RowBox[List["144", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["110", " ", "\[ImaginaryI]"]], "+", RowBox[List["9", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["2", RowBox[List["1", "/", "3"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["144", "+", RowBox[List["144", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "110"]], " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["9", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]]]], "-", RowBox[List["110", " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "-", RowBox[List["9", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "6"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["8", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAi", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "-", FractionBox[RowBox[List["6", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["14080", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "+", RowBox[List["4320", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["7", "/", "3"]]]]], "-", RowBox[List["81", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["13", "/", "3"]]]]], "-", RowBox[List["14080", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List["4320", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "12"]]], " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List["81", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SuperscriptBox["z", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], SuperscriptBox["z", RowBox[List["1", "/", "3"]]]], "-", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "28160"]], "-", RowBox[List["28160", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["8640", "+", RowBox[List["8640", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "12"]]], " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["162", "+", RowBox[List["162", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SuperscriptBox["z", RowBox[List["14", "/", "3"]]]]], "-", RowBox[List["14080", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["4320", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["81", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["48", "+", RowBox[List["48", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["110", " ", "\[ImaginaryI]"]], "+", RowBox[List["9", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["2", " ", SqrtBox["3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", FractionBox[RowBox[List["96", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["110", "-", RowBox[List["110", " ", "\[ImaginaryI]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["18", "-", RowBox[List["18", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "6"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["7", "/", "3"]]]]], "+", RowBox[List["110", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", FractionBox[RowBox[List["9", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["7", "/", "3"]]]]], SuperscriptBox["2", RowBox[List["2", "/", "3"]]]]]], ")"]], " ", RowBox[List["AiryBi", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["4", "/", "3"]]]], "+", FractionBox[RowBox[List["2", " ", SqrtBox["3"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "14080"]], "-", RowBox[List["14080", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["4320", "+", RowBox[List["4320", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "12"]]], " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["81", "+", RowBox[List["81", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SuperscriptBox["z", RowBox[List["14", "/", "3"]]]]], "-", RowBox[List["14080", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "-", RowBox[List["4320", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["81", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "28160"]], "-", RowBox[List["28160", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["8640", "+", RowBox[List["8640", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "12"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["162", "+", RowBox[List["162", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["14", "/", "3"]]]]], "+", RowBox[List["14080", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "-", RowBox[List["4320", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "-", RowBox[List["81", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]]], ")"]]]], RowBox[List["486", " ", SuperscriptBox["2", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["10", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["5", "/", "3"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|