|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.19.06.0012.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KelvinKei[\[Nu], z] == (1/2) Sum[((I - 1)^k/(2^(3 (k/2)) k!))
(Sum[Binomial[k, 2 j] ((1 + I^k) (-2 I Pi (-1)^k Cos[Pi \[Nu]]
Floor[Arg[z - x]/(2 Pi)] KelvinBei[-\[Nu] + k - 4 j, x] +
E^(2 I Pi \[Nu] Floor[Arg[z - x]/(2 Pi)]) KelvinKei[
\[Nu] - k + 4 j, x]) - I (1 - I^k)
((-(-1)^k) 2 I Pi Cos[Pi \[Nu]] Floor[Arg[z - x]/(2 Pi)]
KelvinBer[-\[Nu] + k - 4 j, x] +
E^(2 I Pi \[Nu] Floor[Arg[z - x]/(2 Pi)]) KelvinKer[
\[Nu] - k + 4 j, x])), {j, 0, Floor[k/2]}] -
Sum[Binomial[k, 2 j + 1] ((1 + I^k) ((-(-1)^k) 2 I Pi Cos[Pi \[Nu]]
Floor[Arg[z - x]/(2 Pi)] KelvinBei[-\[Nu] + k - 4 j - 2, x] +
E^(2 I Pi \[Nu] Floor[Arg[z - x]/(2 Pi)]) KelvinKei[
\[Nu] - k + 4 j + 2, x]) - I (1 - I^k)
((-(-1)^k) 2 I Pi Cos[Pi \[Nu]] Floor[Arg[z - x]/(2 Pi)]
KelvinBer[-\[Nu] + k - 4 j - 2, x] +
E^(2 I Pi \[Nu] Floor[Arg[z - x]/(2 Pi)]) KelvinKer[
\[Nu] - k + 4 j + 2, x])), {j, 0, Floor[(k - 1)/2]}]) (z - x)^k,
{k, 0, Infinity}] /; Element[x, Reals] && x < 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", "\n", "\t", RowBox[List[FractionBox["1", "2"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], RowBox[List["k", "/", "2"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", "-", "1"]], ")"]], "k"]]], RowBox[List["k", "!"]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", RowBox[List["k", "/", "2"]], "]"]]], " ", RowBox[List[RowBox[List["Binomial", "[", RowBox[List["k", ",", RowBox[List["2", "j"]]]], "]"]], RowBox[List["(", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "+", "k", "-", RowBox[List["4", " ", "j"]]]], ",", "x"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["\[Nu]", "-", "k", "+", RowBox[List["4", " ", "j"]]]], ",", "x"]], "]"]]]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], "2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "+", "k", "-", RowBox[List["4", " ", "j"]]]], ",", "x"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List["\[Nu]", "-", "k", "+", RowBox[List["4", " ", "j"]]]], ",", "x"]], "]"]]]]]], ")"]]]]]], ")"]], ")"]]]]]], "-", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], "/", "2"]], "]"]]], " ", RowBox[List[RowBox[List["Binomial", "[", RowBox[List["k", ",", RowBox[List[RowBox[List["2", "j"]], "+", "1"]]]], "]"]], RowBox[List["(", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], "2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "+", "k", "-", RowBox[List["4", " ", "j"]], "-", "2"]], ",", "x"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["\[Nu]", "-", "k", "+", RowBox[List["4", " ", "j"]], "+", "2"]], ",", "x"]], "]"]]]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], "2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "+", "k", "-", RowBox[List["4", " ", "j"]], "-", "2"]], ",", "x"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List["\[Nu]", "-", "k", "+", RowBox[List["4", " ", "j"]], "+", "2"]], ",", "x"]], "]"]]]]]], ")"]]]]]], ")"]], ")"]]]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "k"]]]]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "\[And]", RowBox[List["x", "<", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> kei </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mi> k </mi> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List["2", " ", "j"]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> ⅈ </mi> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> kei </mi> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> ν </mi> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> bei </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mi> k </mi> <mo> - </mo> <mi> ν </mi> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ⅈ </mi> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> ker </mi> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> ν </mi> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> ber </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mi> k </mi> <mo> - </mo> <mi> ν </mi> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> ⅈ </mi> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> kei </mi> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> bei </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mi> k </mi> <mo> - </mo> <mi> ν </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ⅈ </mi> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> ker </mi> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> ber </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mi> k </mi> <mo> - </mo> <mi> ν </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> x </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> x </mi> <mo> < </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> KelvinKei </ci> <ci> ν </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> k </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <imaginaryi /> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <ci> k </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> k </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <imaginaryi /> <ci> k </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> KelvinKei </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> ν </ci> </apply> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <cos /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> KelvinBei </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> j </ci> </apply> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <ci> x </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <imaginaryi /> <ci> k </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> KelvinKer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> ν </ci> </apply> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <cos /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> KelvinBer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> j </ci> </apply> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <ci> x </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> k </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <imaginaryi /> <ci> k </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> KelvinKei </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <cos /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> KelvinBei </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> j </ci> </apply> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -2 </cn> </apply> <ci> x </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <imaginaryi /> <ci> k </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> KelvinKer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <cos /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> KelvinBer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> j </ci> </apply> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -2 </cn> </apply> <ci> x </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> x </ci> <reals /> </apply> <apply> <lt /> <ci> x </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["-", FractionBox[RowBox[List["3", " ", "k"]], "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", "-", "1"]], ")"]], "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", FractionBox["k", "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["k", ",", RowBox[List["2", " ", "j"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "+", "k", "-", RowBox[List["4", " ", "j"]]]], ",", "x"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["\[Nu]", "-", "k", "+", RowBox[List["4", " ", "j"]]]], ",", "x"]], "]"]]]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], " ", "2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "+", "k", "-", RowBox[List["4", " ", "j"]]]], ",", "x"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List["\[Nu]", "-", "k", "+", RowBox[List["4", " ", "j"]]]], ",", "x"]], "]"]]]]]], ")"]]]]]], ")"]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["k", "-", "1"]], "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["k", ",", RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], " ", "2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "+", "k", "-", RowBox[List["4", " ", "j"]], "-", "2"]], ",", "x"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["\[Nu]", "-", "k", "+", RowBox[List["4", " ", "j"]], "+", "2"]], ",", "x"]], "]"]]]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], " ", "2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "+", "k", "-", RowBox[List["4", " ", "j"]], "-", "2"]], ",", "x"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List["\[Nu]", "-", "k", "+", RowBox[List["4", " ", "j"]], "+", "2"]], ",", "x"]], "]"]]]]]], ")"]]]]]], ")"]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "k"]]], RowBox[List["k", "!"]]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "&&", RowBox[List["x", "<", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|