Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinKei






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinKei[nu,z] > Series representations > Generalized power series > Expansions at z==0 > For the function itself > General case





http://functions.wolfram.com/03.19.06.0014.01









  


  










Input Form





KelvinKei[\[Nu], z] \[Proportional] ((-2^(-1 + \[Nu])) Sin[(3 Pi \[Nu])/4] Gamma[\[Nu]] (1 - z^4/(32 (-2 + \[Nu]) (-1 + \[Nu])) + z^8/(6144 (-4 + \[Nu]) (-3 + \[Nu]) (-2 + \[Nu]) (-1 + \[Nu])) + \[Ellipsis]))/z^\[Nu] - 2^(-1 - \[Nu]) z^\[Nu] Sin[(Pi \[Nu])/4] Gamma[-\[Nu]] (1 - z^4/(32 (1 + \[Nu]) (2 + \[Nu])) + z^8/(6144 (1 + \[Nu]) (2 + \[Nu]) (3 + \[Nu]) (4 + \[Nu])) + \[Ellipsis]) - 2^(-3 + \[Nu]) z^(2 - \[Nu]) Cos[(3 Pi \[Nu])/4] Gamma[\[Nu] - 1] (1 - z^4/(96 (-3 + \[Nu]) (-2 + \[Nu])) + z^8/(30720 (-5 + \[Nu]) (-4 + \[Nu]) (-3 + \[Nu]) (-2 + \[Nu])) + \[Ellipsis]) - 2^(-3 - \[Nu]) z^(2 + \[Nu]) Cos[(Pi \[Nu])/4] Gamma[-1 - \[Nu]] (1 - z^4/(96 (2 + \[Nu]) (3 + \[Nu])) + z^8/(30720 (2 + \[Nu]) (3 + \[Nu]) (4 + \[Nu]) (5 + \[Nu])) + \[Ellipsis]) /; (z -> 0) && !Element[\[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]]]]], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], RowBox[List["Gamma", "[", "\[Nu]", "]"]], RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], RowBox[List["32", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ")"]]]]], "+", FractionBox[SuperscriptBox["z", "8"], RowBox[List["6144", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], RowBox[List["32", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]]]]], "+", FractionBox[SuperscriptBox["z", "8"], RowBox[List["6144", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "\[Nu]"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], "+", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["2", "-", "\[Nu]"]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "-", "1"]], "]"]], RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], RowBox[List["96", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ")"]]]]], "+", FractionBox[SuperscriptBox["z", "8"], RowBox[List["30720", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], "-", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["2", "+", "\[Nu]"]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]], "]"]], RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], RowBox[List["96", " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "\[Nu]"]], ")"]]]]], "+", FractionBox[SuperscriptBox["z", "8"], RowBox[List["30720", " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", "\[Nu]"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> kei </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mn> 2 </mn> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mrow> <mn> 96 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 8 </mn> </msup> <mrow> <mn> 30720 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> &#915; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mi> &#957; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 8 </mn> </msup> <mrow> <mn> 6144 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 8 </mn> </msup> <mrow> <mn> 6144 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> z </mi> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mrow> <mn> 96 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 8 </mn> </msup> <mrow> <mn> 30720 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#957; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> KelvinKei </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -3 </cn> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 96 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 30720 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -5 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -4 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#915; </ci> <ci> &#957; </ci> <apply> <sin /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 6144 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -4 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> &#957; </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 6144 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <apply> <cos /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 96 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 30720 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <notin /> <ci> &#957; </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]]]]], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", RowBox[List["Gamma", "[", "\[Nu]", "]"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], RowBox[List["32", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ")"]]]]], "+", FractionBox[SuperscriptBox["z", "8"], RowBox[List["6144", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], RowBox[List["32", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]]]]], "+", FractionBox[SuperscriptBox["z", "8"], RowBox[List["6144", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "\[Nu]"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], "+", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["2", "-", "\[Nu]"]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "-", "1"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], RowBox[List["96", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ")"]]]]], "+", FractionBox[SuperscriptBox["z", "8"], RowBox[List["30720", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], "-", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["2", "+", "\[Nu]"]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], RowBox[List["96", " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "\[Nu]"]], ")"]]]]], "+", FractionBox[SuperscriptBox["z", "8"], RowBox[List["30720", " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", "\[Nu]"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]], "&&", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02