|  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/03.19.06.0023.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | KelvinKei[1, z] \[Proportional] -(1/(Sqrt[2] z)) - 
   (z/8) (Sqrt[2] (-1 + 2 EulerGamma + 2 Log[z/2]) - 
     (1/(4 Sqrt[2])) (-(5/2) + 2 EulerGamma + 2 Log[z/2]) z^2 - 
     (1/(96 Sqrt[2])) (-(10/3) + 2 EulerGamma + 2 Log[z/2]) z^4 + 
     \[Ellipsis]) + ((Pi z)/(8 Sqrt[2])) (1 - z^4/192 + z^8/737280 + 
     \[Ellipsis]) + ((Pi z^3)/(64 Sqrt[2])) (1 - z^4/1152 + z^8/11059200 + 
     \[Ellipsis]) /; (z -> 0) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKei", "[", RowBox[List["1", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List[SqrtBox["2"], " ", "z"]]]]], "-", RowBox[List[FractionBox["z", "8"], RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["4", " ", SqrtBox["2"]]]], RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]]]], ")"]], SuperscriptBox["z", "2"]]], "-", RowBox[List[FractionBox["1", RowBox[List["96", " ", SqrtBox["2"]]]], RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["10", "3"]]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]]]], ")"]], SuperscriptBox["z", "4"]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "z", " "]], RowBox[List["8", " ", SqrtBox["2"]]]], RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], "192"], "+", FractionBox[SuperscriptBox["z", "8"], "737280"], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", SuperscriptBox["z", "3"]]], RowBox[List["64", " ", SqrtBox["2"]]]], RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], "1152"], "+", FractionBox[SuperscriptBox["z", "8"], "11059200"], "+", "\[Ellipsis]"]], ")"]]]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msub>  <mi> kei </mi>  <mn> 1 </mn>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ∝ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mfrac>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mi> z </mi>  <mn> 8 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> z </mi>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> z </mi>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 5 </mn>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  </mrow>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> z </mi>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 10 </mn>  <mn> 3 </mn>  </mfrac>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  </mrow>  </mrow>  <mrow>  <mn> 96 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mo> … </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  <mn> 192 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  <mn> 737280 </mn>  </mfrac>  <mo> + </mo>  <mo> … </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mrow>  <mn> 64 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  <mn> 1152 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  <mn> 11059200 </mn>  </mfrac>  <mo> + </mo>  <mo> … </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mn> 0 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <ci> Proportional </ci>  <apply>  <ci> KelvinKei </ci>  <cn type='integer'> 1 </cn>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ln />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <eulergamma />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ln />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 5 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <eulergamma />  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ln />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 10 <sep /> 3 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <eulergamma />  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 96 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  </apply>  <ci> … </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <pi />  <ci> z </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 192 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 737280 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> … </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <pi />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 64 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 1152 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 11059200 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> … </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Rule </ci>  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKei", "[", RowBox[List["1", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List[SqrtBox["2"], " ", "z"]]]]], "-", RowBox[List[FractionBox["1", "8"], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]]]], ")"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], RowBox[List["4", " ", SqrtBox["2"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["10", "3"]]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]]]], ")"]], " ", SuperscriptBox["z", "4"]]], RowBox[List["96", " ", SqrtBox["2"]]]], "+", "\[Ellipsis]"]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", "z"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], "192"], "+", FractionBox[SuperscriptBox["z", "8"], "737280"], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["8", " ", SqrtBox["2"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", SuperscriptBox["z", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], "1152"], "+", FractionBox[SuperscriptBox["z", "8"], "11059200"], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["64", " ", SqrtBox["2"]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  |