|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.19.06.0025.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KelvinKei[n, z] \[Proportional] (-((Pi 2^(-n - 2) z^n Cos[(3 n Pi)/4])/n!))
(1 - z^4/(32 (1 + n) (2 + n)) + z^8/(6144 (1 + n) (2 + n) (3 + n)
(4 + n)) + \[Ellipsis]) + ((Pi 2^(-4 - n) z^(2 + n) Sin[(3 n Pi)/4])/
(1 + n)!) (1 - z^4/(96 (2 + n) (3 + n)) +
z^8/(30720 (2 + n) (3 + n) (4 + n) (5 + n)) + \[Ellipsis]) +
((I/4) Sum[(((E^((3 I Pi n)/4) - (-1)^k/E^((3 I Pi n)/4)) (n - k - 1)!)/
k!) ((I z^2)/4)^k, {k, 0, n - 1}])/(z/2)^n +
2^(-2 - n) (-1)^n z^n (((2 Sin[(n Pi)/4])/n!) (EulerGamma + 2 Log[z/2] -
PolyGamma[1 + n]) - (Cos[(n Pi)/4]/(2 (1 + n)!))
(-1 + EulerGamma + 2 Log[z/2] - PolyGamma[2 + n]) z^2 -
(Sin[(n Pi)/4]/(16 (2 + n)!)) (-(3/2) + EulerGamma + 2 Log[z/2] -
PolyGamma[3 + n]) z^4 + \[Ellipsis]) /;
(z -> 0) && Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKei", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[RowBox[List["-", " ", FractionBox[RowBox[List["\[Pi]", " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "-", "2"]]], " ", SuperscriptBox["z", "n"], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "n", " ", "\[Pi]"]], "4"], "]"]]]], RowBox[List["n", "!"]]]]], RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], RowBox[List["32", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]]]]], "+", FractionBox[SuperscriptBox["z", "8"], RowBox[List["6144", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "n"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "4"]], "-", "n"]]], " ", SuperscriptBox["z", RowBox[List["2", "+", "n"]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "n", " ", "\[Pi]"]], "4"], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], RowBox[List["96", " ", RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "n"]], ")"]]]]], "+", FractionBox[SuperscriptBox["z", "8"], RowBox[List["30720", " ", RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", "n"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox["\[ImaginaryI]", "4"], SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["-", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["3", "\[ImaginaryI]", " ", "\[Pi]", " ", "n"]], "4"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["3", "\[ImaginaryI]", " ", "\[Pi]", " ", "n"]], "4"]]], " "]]]]]]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k", "-", "1"]], ")"]], "!"]]]], RowBox[List["k", "!"]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], "4"], ")"]], "k"]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["z", "n"], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "4"], "]"]]]], RowBox[List["n", "!"]]], RowBox[List["(", RowBox[List["EulerGamma", "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "4"], "]"]], RowBox[List["2", " ", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], "!"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "EulerGamma", "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", "+", "n"]], "]"]]]], ")"]], SuperscriptBox["z", "2"]]], " ", "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["Sin", "[", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "4"], "]"]], " "]], RowBox[List["16", " ", RowBox[List[RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", "EulerGamma", "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["3", "+", "n"]], "]"]]]], ")"]], SuperscriptBox["z", "4"]]], "+", "\[Ellipsis]"]], " ", ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> kei </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <mfrac> <mi> ⅈ </mi> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mn> 4 </mn> </mfrac> </msup> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mtext> </mtext> </mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mi> sin </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> + </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 8 </mn> </msup> <mrow> <mn> 6144 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mrow> <mn> 96 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 8 </mn> </msup> <mrow> <mn> 30720 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> KelvinKei </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <ci> n </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <factorial /> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> sin </ci> <apply> <times /> <ci> n </ci> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <eulergamma /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> n </ci> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <eulergamma /> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> n </ci> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <eulergamma /> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <ci> … </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 6144 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -4 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 96 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 30720 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKei", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "-", "2"]]], " ", SuperscriptBox["z", "n"], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "n", " ", "\[Pi]"]], "4"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], RowBox[List["32", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]]]]], "+", FractionBox[SuperscriptBox["z", "8"], RowBox[List["6144", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "n"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["n", "!"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "4"]], "-", "n"]]], " ", SuperscriptBox["z", RowBox[List["2", "+", "n"]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "n", " ", "\[Pi]"]], "4"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], RowBox[List["96", " ", RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "n"]], ")"]]]]], "+", FractionBox[SuperscriptBox["z", "8"], RowBox[List["30720", " ", RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", "n"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], "!"]]], "+", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["-", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "n"]], "4"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "n"]], ")"]]]]]]]]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k", "-", "1"]], ")"]], "!"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], "4"], ")"]], "k"]]], RowBox[List["k", "!"]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["z", "n"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "4"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["EulerGamma", "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], ")"]]]], RowBox[List["n", "!"]]], "-", FractionBox[RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "4"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "EulerGamma", "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", "+", "n"]], "]"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], RowBox[List["2", " ", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], "!"]]]]], "-", FractionBox[RowBox[List[RowBox[List["Sin", "[", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "4"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", "EulerGamma", "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["3", "+", "n"]], "]"]]]], ")"]], " ", SuperscriptBox["z", "4"]]], RowBox[List["16", " ", RowBox[List[RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], "!"]]]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|