Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinKei






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinKei[nu,z] > Series representations > Asymptotic series expansions > Expansions for any z in exponential form > Using exponential function with branch cut-free arguments > Logarithmic cases





http://functions.wolfram.com/03.19.06.0045.01









  


  










Input Form





KelvinKei[\[Nu], z] \[Proportional] (E^(-(((1 + I) z)/Sqrt[2]) + (Pi I (\[Nu] + 1))/2)/ (8 Sqrt[2 Pi] Sqrt[(-(-1)^(1/4)) z] ((-1)^(3/4) z)^(3/2))) ((Sqrt[(-(-1)^(1/4)) z] (Pi (4 (-1)^\[Nu] z - 3 I E^((1 + I) Sqrt[2] z) z + ((3 - 3 I) (-1)^\[Nu] Sqrt[I z^2])/Sqrt[2]) + 4 (E^((1 + I) Sqrt[2] z) z + (-1)^(1/4 + \[Nu]) Sqrt[I z^2]) (-Log[z] + Log[(-1)^(3/4) z])) - Sqrt[(-1)^(3/4) z] ((-(Pi/Sqrt[2])) (I Sqrt[2] E^(I Sqrt[2] z) z + (1 + I) (-1)^\[Nu] E^(Sqrt[2] z) ((-2 + 2 I) Sqrt[2] z + Sqrt[(-I) z^2])) + 4 (E^(I Sqrt[2] z) z - (-1)^(3/4 + \[Nu]) E^(Sqrt[2] z) Sqrt[(-I) z^2]) (-Log[z] + Log[(-(-1)^(1/4)) z]))) HypergeometricPFQ[{(1 - 2 \[Nu])/8, (3 - 2 \[Nu])/8, (5 - 2 \[Nu])/8, (7 - 2 \[Nu])/8, (1 + 2 \[Nu])/8, (3 + 2 \[Nu])/8, (5 + 2 \[Nu])/8, (7 + 2 \[Nu])/8}, {1/4, 1/2, 3/4}, -(16/z^4)] - (((-1)^(3/4) (1 - 4 \[Nu]^2))/(8 z)) (Sqrt[(-(-1)^(1/4)) z] (Pi (-4 (-1)^\[Nu] z - 3 I E^((1 + I) Sqrt[2] z) z + 3 (-1)^(3/4 + \[Nu]) Sqrt[I z^2]) + 4 (E^((1 + I) Sqrt[2] z) z - (-1)^(1/4 + \[Nu]) Sqrt[I z^2]) (-Log[z] + Log[(-1)^(3/4) z])) - Sqrt[(-1)^(3/4) z] ((1/2) (-2 E^(I Sqrt[2] z) Pi z + (1 + I) (-1)^\[Nu] E^(Sqrt[2] z) Pi ((4 + 4 I) z - I Sqrt[2] Sqrt[(-I) z^2])) + 4 ((-I) E^(I Sqrt[2] z) z + (-1)^(1/4 + \[Nu]) E^(Sqrt[2] z) Sqrt[(-I) z^2]) (-Log[z] + Log[(-(-1)^(1/4)) z]))) HypergeometricPFQ[{(3 - 2 \[Nu])/8, (5 - 2 \[Nu])/8, (7 - 2 \[Nu])/8, (9 - 2 \[Nu])/8, (3 + 2 \[Nu])/8, (5 + 2 \[Nu])/8, (7 + 2 \[Nu])/8, (9 + 2 \[Nu])/8}, {1/2, 3/4, 5/4}, -(16/z^4)] - ((I (9 - 40 \[Nu]^2 + 16 \[Nu]^4))/(128 z^2)) (Sqrt[(-(-1)^(1/4)) z] (Pi (4 (-1)^\[Nu] z - 3 I E^((1 + I) Sqrt[2] z) z + ((3 - 3 I) (-1)^\[Nu] Sqrt[I z^2])/Sqrt[2]) + 4 (E^((1 + I) Sqrt[2] z) z + (-1)^(1/4 + \[Nu]) Sqrt[I z^2]) (-Log[z] + Log[(-1)^(3/4) z])) + Sqrt[(-1)^(3/4) z] ((-(Pi/Sqrt[2])) (I Sqrt[2] E^(I Sqrt[2] z) z + (1 + I) (-1)^\[Nu] E^(Sqrt[2] z) ((-2 + 2 I) Sqrt[2] z + Sqrt[(-I) z^2])) + 4 (E^(I Sqrt[2] z) z - (-1)^(3/4 + \[Nu]) E^(Sqrt[2] z) Sqrt[(-I) z^2]) (-Log[z] + Log[(-(-1)^(1/4)) z]))) HypergeometricPFQ[{(5 - 2 \[Nu])/8, (7 - 2 \[Nu])/8, (9 - 2 \[Nu])/8, (11 - 2 \[Nu])/8, (5 + 2 \[Nu])/8, (7 + 2 \[Nu])/8, (9 + 2 \[Nu])/8, (11 + 2 \[Nu])/8}, {3/4, 5/4, 3/2}, -(16/z^4)] + (((-1)^(1/4) (-225 + 1036 \[Nu]^2 - 560 \[Nu]^4 + 64 \[Nu]^6))/ (3072 z^3)) (Sqrt[(-(-1)^(1/4)) z] (Pi (-4 (-1)^\[Nu] z - 3 I E^((1 + I) Sqrt[2] z) z + 3 (-1)^(3/4 + \[Nu]) Sqrt[I z^2]) + 4 (E^((1 + I) Sqrt[2] z) z - (-1)^(1/4 + \[Nu]) Sqrt[I z^2]) (-Log[z] + Log[(-1)^(3/4) z])) + Sqrt[(-1)^(3/4) z] ((1/2) (-2 E^(I Sqrt[2] z) Pi z + (1 + I) (-1)^\[Nu] E^(Sqrt[2] z) Pi ((4 + 4 I) z - I Sqrt[2] Sqrt[(-I) z^2])) + 4 ((-I) E^(I Sqrt[2] z) z + (-1)^(1/4 + \[Nu]) E^(Sqrt[2] z) Sqrt[(-I) z^2]) (-Log[z] + Log[(-(-1)^(1/4)) z]))) HypergeometricPFQ[ {(7 - 2 \[Nu])/8, (9 - 2 \[Nu])/8, (11 - 2 \[Nu])/8, (13 - 2 \[Nu])/8, (7 + 2 \[Nu])/8, (9 + 2 \[Nu])/8, (11 + 2 \[Nu])/8, (13 + 2 \[Nu])/8}, {5/4, 3/2, 7/4}, -(16/z^4)]) /; (Abs[z] -> Infinity) && Element[\[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], SqrtBox["2"]]]], "+", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]]]], "2"]]]], RowBox[List["8", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", " ", RowBox[List[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]], RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", "z"]], "-", RowBox[List["3", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "-", RowBox[List["3", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]], SqrtBox["2"]]]], ")"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "4"], "+", "\[Nu]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["\[Pi]", SqrtBox["2"]]]], RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "\[ImaginaryI]"]]]], ")"]], " ", SqrtBox["2"], " ", "z"]], "+", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]], ")"]]]]]], ")"]]]], "+", " ", RowBox[List["4", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["3", "4"], "+", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["3", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["5", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["7", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["1", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["3", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["5", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["7", "+", RowBox[List["2", "\[Nu]"]]]], "8"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["1", "2"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]]]], RowBox[List["8", " ", "z"]]], RowBox[List["(", " ", RowBox[List[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]], RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", "z"]], "-", RowBox[List["3", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["3", "4"], "+", "\[Nu]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]]]], ")"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "4"], "+", "\[Nu]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "\[Pi]", " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["4", "+", RowBox[List["4", " ", "\[ImaginaryI]"]]]], ")"]], " ", "z"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "4"], "+", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["3", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["5", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["7", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["9", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["3", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["5", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["7", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["9", "+", RowBox[List["2", "\[Nu]"]]]], "8"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["3", "4"], ",", FractionBox["5", "4"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["9", "-", RowBox[List["40", " ", SuperscriptBox["\[Nu]", "2"]]], "+", RowBox[List["16", " ", SuperscriptBox["\[Nu]", "4"]]]]], ")"]]]], RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]], RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", "z"]], "-", RowBox[List["3", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "-", RowBox[List["3", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]], SqrtBox["2"]]]], ")"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "4"], "+", "\[Nu]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["\[Pi]", SqrtBox["2"]]]], RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "\[ImaginaryI]"]]]], ")"]], " ", SqrtBox["2"], " ", "z"]], "+", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]], ")"]]]]]], ")"]]]], "+", " ", RowBox[List["4", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["3", "4"], "+", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["5", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["7", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["9", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["11", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["5", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["7", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["9", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["11", "+", RowBox[List["2", "\[Nu]"]]]], "8"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "4"], ",", FractionBox["5", "4"], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "225"]], "+", RowBox[List["1036", " ", SuperscriptBox["\[Nu]", "2"]]], "-", RowBox[List["560", " ", SuperscriptBox["\[Nu]", "4"]]], "+", RowBox[List["64", " ", SuperscriptBox["\[Nu]", "6"]]]]], ")"]]]], RowBox[List["3072", " ", SuperscriptBox["z", "3"]]]], RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]], RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", "z"]], "-", RowBox[List["3", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["3", "4"], "+", "\[Nu]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]]]], ")"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "4"], "+", "\[Nu]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "\[Pi]", " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["4", "+", RowBox[List["4", " ", "\[ImaginaryI]"]]]], ")"]], " ", "z"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "4"], "+", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["7", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["9", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["11", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["13", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["7", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["9", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["11", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["13", "+", RowBox[List["2", "\[Nu]"]]]], "8"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "4"], ",", FractionBox["3", "2"], ",", FractionBox["7", "4"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> kei </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> &#63332; </mi> <mo> &#8290; </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msqrt> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mtext> </mtext> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 8 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 16 </mn> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;8&quot;], SubscriptBox[&quot;F&quot;, &quot;3&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;3&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;5&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;7&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;3&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;5&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;7&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;16&quot;, SuperscriptBox[&quot;z&quot;, &quot;4&quot;]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 8 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 9 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 16 </mn> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;8&quot;], SubscriptBox[&quot;F&quot;, &quot;3&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;3&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;5&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;7&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;9&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;3&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;5&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;7&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;9&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;5&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;16&quot;, SuperscriptBox[&quot;z&quot;, &quot;4&quot;]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 40 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mtext> </mtext> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 8 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 9 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 11 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 11 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 16 </mn> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;8&quot;], SubscriptBox[&quot;F&quot;, &quot;3&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;5&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;7&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;9&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;11&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;5&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;7&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;9&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;11&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;3&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;5&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;16&quot;, SuperscriptBox[&quot;z&quot;, &quot;4&quot;]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 560 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1036 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 225 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 3072 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mtext> </mtext> <mrow> <mrow> <msqrt> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 8 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 9 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 11 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 13 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 11 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 13 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 16 </mn> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;8&quot;], SubscriptBox[&quot;F&quot;, &quot;3&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;7&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;9&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;11&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;13&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]]]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;7&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;9&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;11&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;8&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;13&quot;]], &quot;)&quot;]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;5&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;7&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;16&quot;, SuperscriptBox[&quot;z&quot;, &quot;4&quot;]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#957; </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> KelvinKei </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <pi /> <apply> <times /> <ci> &#63332; </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <imaginaryi /> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='complex-cartesian'> -2 <sep /> 2 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='complex-cartesian'> 3 <sep /> -3 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 7 </cn> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 4 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -3 </cn> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <pi /> <apply> <plus /> <apply> <times /> <cn type='complex-cartesian'> 4 <sep /> 4 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 9 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 9 </cn> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 4 </cn> <cn type='rational'> 5 <sep /> 4 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 9 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <imaginaryi /> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='complex-cartesian'> -2 <sep /> 2 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='complex-cartesian'> 3 <sep /> -3 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 9 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 11 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 11 </cn> </apply> </apply> </list> <list> <cn type='rational'> 3 <sep /> 4 </cn> <cn type='rational'> 5 <sep /> 4 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 560 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1036 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -225 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 3072 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <pi /> <apply> <plus /> <apply> <times /> <cn type='complex-cartesian'> 4 <sep /> 4 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -3 </cn> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 9 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 11 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 13 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 13 </cn> </apply> </apply> </list> <list> <cn type='rational'> 5 <sep /> 4 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 7 <sep /> 4 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <in /> <ci> &#957; </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], SqrtBox["2"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", "z"]], "-", RowBox[List["3", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "-", RowBox[List["3", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]], SqrtBox["2"]]]], ")"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "4"], "+", "\[Nu]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "\[ImaginaryI]"]]]], ")"]], " ", SqrtBox["2"], " ", "z"]], "+", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]], ")"]]]]]], ")"]]]], SqrtBox["2"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["3", "4"], "+", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["1", "2"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", "z"]], "-", RowBox[List["3", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["3", "4"], "+", "\[Nu]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]]]], ")"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "4"], "+", "\[Nu]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "\[Pi]", " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["4", "+", RowBox[List["4", " ", "\[ImaginaryI]"]]]], ")"]], " ", "z"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "4"], "+", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["9", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["3", "4"], ",", FractionBox["5", "4"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]], RowBox[List["8", " ", "z"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["9", "-", RowBox[List["40", " ", SuperscriptBox["\[Nu]", "2"]]], "+", RowBox[List["16", " ", SuperscriptBox["\[Nu]", "4"]]]]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", "z"]], "-", RowBox[List["3", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "-", RowBox[List["3", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]], SqrtBox["2"]]]], ")"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "4"], "+", "\[Nu]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "\[ImaginaryI]"]]]], ")"]], " ", SqrtBox["2"], " ", "z"]], "+", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]], ")"]]]]]], ")"]]]], SqrtBox["2"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["3", "4"], "+", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["9", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["11", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["11", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "4"], ",", FractionBox["5", "4"], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]], RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "225"]], "+", RowBox[List["1036", " ", SuperscriptBox["\[Nu]", "2"]]], "-", RowBox[List["560", " ", SuperscriptBox["\[Nu]", "4"]]], "+", RowBox[List["64", " ", SuperscriptBox["\[Nu]", "6"]]]]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", "z"]], "-", RowBox[List["3", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["3", "4"], "+", "\[Nu]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]]]], ")"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "4"], "+", "\[Nu]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "\[Pi]", " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["4", "+", RowBox[List["4", " ", "\[ImaginaryI]"]]]], ")"]], " ", "z"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]], " ", "z"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "4"], "+", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["9", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["11", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["13", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["11", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["13", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "4"], ",", FractionBox["3", "2"], ",", FractionBox["7", "4"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]], RowBox[List["3072", " ", SuperscriptBox["z", "3"]]]]]], ")"]]]], RowBox[List["8", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02