Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinKei






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinKei[nu,z] > Transformations > Transformations and argument simplifications > Argument involving basic arithmetic operations





http://functions.wolfram.com/03.19.16.0007.01









  


  










Input Form





KelvinKei[\[Nu], z/(-1)^4^(-1)] == (1/2) Pi Csc[Pi \[Nu]] ((-(z/(-1)^4^(-1))^(-\[Nu])) ((-1)^(1/4) z)^\[Nu] (Cos[(3 Pi \[Nu])/2] KelvinBei[-\[Nu], (-1)^(1/4) z] + Sin[(3 Pi \[Nu])/2] KelvinBer[-\[Nu], (-1)^(1/4) z]) + ((z/(-1)^4^(-1))^\[Nu] (Cos[(Pi \[Nu])/2] KelvinBei[\[Nu], (-1)^(1/4) z] - Sin[(Pi \[Nu])/2] KelvinBer[\[Nu], (-1)^(1/4) z]))/ ((-1)^(1/4) z)^\[Nu]) /; !Element[\[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "4"]]], " ", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "4"]]], " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], ")"]], "\[Nu]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "2"], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]], "]"]]]], "+", RowBox[List[RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "2"], "]"]], RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "4"]]], " ", "z"]], ")"]], "\[Nu]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]", ",", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]], "]"]]]], "-", " ", RowBox[List[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], RowBox[List["KelvinBer", "[", RowBox[List["\[Nu]", ",", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> kei </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mfrac> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mfrac> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> bei </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> ber </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mfrac> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> bei </mi> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <msub> <mi> ber </mi> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> &#957; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> KelvinKei </ci> <ci> &#957; </ci> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <pi /> <apply> <csc /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> KelvinBei </ci> <ci> &#957; </ci> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> KelvinBer </ci> <ci> &#957; </ci> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <ci> &#957; </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> KelvinBei </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <ci> KelvinBer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <ci> &#957; </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]_", ",", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "4"]]], " ", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "4"]]], " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], ")"]], "\[Nu]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "2"], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]], "]"]]]], "+", RowBox[List[RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "2"], "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "4"]]], " ", "z"]], ")"]], "\[Nu]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]", ",", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]], "]"]]]], "-", RowBox[List[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List["\[Nu]", ",", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], "/;", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02