|  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/03.19.16.0017.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | KelvinKei[\[Nu], Subscript[z, 1] + Subscript[z, 2]] == 
  Sum[KelvinBei[k, Subscript[z, 2]] KelvinKer[\[Nu] - k, Subscript[z, 1]] + 
    KelvinBer[k, Subscript[z, 2]] KelvinKei[\[Nu] - k, Subscript[z, 1]], 
   {k, -Infinity, Infinity}] /; Abs[Subscript[z, 2]/Subscript[z, 1]] < 1 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", RowBox[List[SubscriptBox["z", "1"], "+", SubscriptBox["z", "2"]]]]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["KelvinBei", "[", RowBox[List["k", ",", SubscriptBox["z", "2"]]], "]"]], " ", RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List["\[Nu]", "-", "k"]], ",", SubscriptBox["z", "1"]]], "]"]]]], "+", RowBox[List[RowBox[List["KelvinBer", "[", RowBox[List["k", ",", SubscriptBox["z", "2"]]], "]"]], " ", RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["\[Nu]", "-", "k"]], ",", SubscriptBox["z", "1"]]], "]"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", FractionBox[SubscriptBox["z", "2"], SubscriptBox["z", "1"]], "]"]], "<", "1"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msub>  <mi> kei </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> ker </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mtext>    </mtext>  <mrow>  <mi> csc </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mfrac>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mn> 4 </mn>  </mfrac>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> ν </mi>  </msup>  </mrow>  <msup>  <mi> z </mi>  <mi> ν </mi>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> I </mi>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  </msub>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mn> 4 </mn>  </mfrac>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mi> ν </mi>  </msup>  <mtext>   </mtext>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> ν </mi>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> I </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <plus />  <apply>  <ci> KelvinKei </ci>  <ci> ν </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <ci> KelvinKer </ci>  <ci> ν </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <pi />  <imaginaryi />  <apply>  <csc />  <apply>  <times />  <pi />  <ci> ν </ci>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 3 </cn>  <imaginaryi />  <pi />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <ci> z </ci>  </apply>  <ci> ν </ci>  </apply>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <ci> ν </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> BesselI </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <pi />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <ci> ν </ci>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <ci> z </ci>  </apply>  <ci> ν </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> BesselI </ci>  <ci> ν </ci>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]_", ",", RowBox[List[SubscriptBox["z_", "1"], "+", SubscriptBox["z_", "2"]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["KelvinBei", "[", RowBox[List["k", ",", SubscriptBox["zz", "2"]]], "]"]], " ", RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List["\[Nu]", "-", "k"]], ",", SubscriptBox["zz", "1"]]], "]"]]]], "+", RowBox[List[RowBox[List["KelvinBer", "[", RowBox[List["k", ",", SubscriptBox["zz", "2"]]], "]"]], " ", RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["\[Nu]", "-", "k"]], ",", SubscriptBox["zz", "1"]]], "]"]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["Abs", "[", FractionBox[SubscriptBox["zz", "2"], SubscriptBox["zz", "1"]], "]"]], "<", "1"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  |