| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/03.19.20.0002.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Derivative[1, 0][KelvinKei][n, z] == (-(1/2)) Pi KelvinKer[n, z] + 
   ((Pi n!)/4) Sum[(1/(k! (n - k))) (z/2)^(k - n) 
      (Cos[(3 (k - n) Pi)/4] KelvinBer[k, z] - Sin[(3 (k - n) Pi)/4] 
        KelvinBei[k, z]), {k, 0, n - 1}] + 
   (1/4) (-1)^n Derivative[2, 0][KelvinBei][-n, z] - 
   (1/4) Derivative[2, 0][KelvinBei][n, z] /; Element[n, Integers] && n >= 0 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["1", ",", "0"]], "]"]], "[", "KelvinKei", "]"]], "[", RowBox[List["n", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[Pi]", " ", RowBox[List["KelvinKer", "[", RowBox[List["n", ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["n", "!"]]]], "4"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]]]]], SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["k", "-", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["3", RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], " ", "\[Pi]"]], "4"], " ", "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List["k", ",", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["Sin", "[", FractionBox[RowBox[List["3", RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], " ", "\[Pi]"]], "4"], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List["k", ",", "z"]], "]"]]]]]], ")"]]]]]]]], "+", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List[SuperscriptBox["KelvinBei", TagBox[RowBox[List["(", RowBox[List["2", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "n"]], ",", "z"]], "]"]]]], "-", RowBox[List[FractionBox["1", "4"], " ", RowBox[List[SuperscriptBox["KelvinBei", TagBox[RowBox[List["(", RowBox[List["2", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["n", ",", "z"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msubsup>  <semantics>  <mi> kei </mi>  <annotation encoding='Mathematica'> TagBox["kei", BesselJ] </annotation>  </semantics>  <mi> n </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mn> 0 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative] </annotation>  </semantics>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mi> π </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> ker </mi>  <mi> n </mi>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  </mrow>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> k </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mi> z </mi>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> ber </mi>  <mi> k </mi>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> bei </mi>  <mi> k </mi>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <semantics>  <mi> bei </mi>  <annotation encoding='Mathematica'> TagBox["bei", BesselJ] </annotation>  </semantics>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mn> 0 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative] </annotation>  </semantics>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <semantics>  <mi> bei </mi>  <annotation encoding='Mathematica'> TagBox["bei", BesselJ] </annotation>  </semantics>  <mi> n </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mn> 0 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative] </annotation>  </semantics>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℕ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation>  </semantics>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <apply>  <partialdiff />  <list>  <cn type='integer'> 1 </cn>  <cn type='integer'> 0 </cn>  </list>  <apply>  <ci> Subscript </ci>  <apply>  <ci> BesselJ </ci>  <ci> kei </ci>  </apply>  <ci> n </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> KelvinKer </ci>  <ci> n </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <pi />  <apply>  <factorial />  <ci> n </ci>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <factorial />  <ci> k </ci>  </apply>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <cos />  <apply>  <times />  <cn type='rational'> 3 <sep /> 4 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  <pi />  </apply>  </apply>  <apply>  <ci> KelvinBer </ci>  <ci> k </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <sin />  <apply>  <times />  <cn type='rational'> 3 <sep /> 4 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  <pi />  </apply>  </apply>  <apply>  <ci> KelvinBei </ci>  <ci> k </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <apply>  <apply>  <partialdiff />  <list>  <cn type='integer'> 1 </cn>  <cn type='integer'> 0 </cn>  </list>  <apply>  <ci> Subscript </ci>  <apply>  <ci> BesselJ </ci>  <ci> bei </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <apply>  <partialdiff />  <list>  <cn type='integer'> 1 </cn>  <cn type='integer'> 0 </cn>  </list>  <apply>  <ci> Subscript </ci>  <apply>  <ci> BesselJ </ci>  <ci> bei </ci>  </apply>  <ci> n </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> n </ci>  <integers />  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["KelvinKei", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[Pi]", " ", RowBox[List["KelvinKer", "[", RowBox[List["n", ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", RowBox[List["n", "!"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["k", "-", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["3", "4"], " ", RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List["k", ",", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["Sin", "[", RowBox[List[FractionBox["3", "4"], " ", RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List["k", ",", "z"]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]]]]]]]]], "+", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List[SuperscriptBox["KelvinBei", TagBox[RowBox[List["(", RowBox[List["2", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "n"]], ",", "z"]], "]"]]]], "-", RowBox[List[FractionBox["1", "4"], " ", RowBox[List[SuperscriptBox["KelvinBei", TagBox[RowBox[List["(", RowBox[List["2", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["n", ",", "z"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  |