|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.19.20.0009.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[KelvinKei[\[Nu], z]/z^\[Nu], z] == (1/(z^\[Nu] Sqrt[2]))
(-KelvinKer[1 + \[Nu], z] + KelvinKei[1 + \[Nu], z])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", "z"], RowBox[List["(", RowBox[List[SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], " ", ")"]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], SqrtBox["2"]], RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "z"]], "]"]]]], "+", RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "z"]], "]"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <mo> ∂ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> kei </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <mi> z </mi> </mrow> </mfrac> <mo>  </mo> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mtext> </mtext> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> kei </mi> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msub> <mi> ker </mi> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <ci> KelvinKei </ci> <ci> ν </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> KelvinKei </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> KelvinKer </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["z_"]]], RowBox[List["(", RowBox[List[SuperscriptBox["z_", RowBox[List["-", "\[Nu]_"]]], " ", RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], ")"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "z"]], "]"]]]], "+", RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "z"]], "]"]]]], ")"]]]], SqrtBox["2"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|