Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinKei






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinKei[nu,z] > Differentiation > Symbolic differentiation > With respect to nu





http://functions.wolfram.com/03.19.20.0012.01









  


  










Input Form





Derivative[m, 0][KelvinKei][\[Nu], z] == (1/2) Pi (Sum[(1/k!) (z/2)^(2 k) D[((z/2)^\[Nu] Cos[(1/4) Pi (2 k + 3 \[Nu])])/Gamma[k + \[Nu] + 1], {\[Nu], m}], {k, 0, Infinity}] + Sum[Binomial[m, j] (Pi^(m - j) (-I)^(m - j + 1) Sum[(1/2^i) (((-1)^i i!) StirlingS2[m - j, i] ((I Cot[(Pi \[Nu])/2] + 1)^i (I Cot[(Pi \[Nu])/2] - 1) - 2^(m - j) (I Cot[Pi \[Nu]] + 1)^i (I Cot[Pi \[Nu]] - 1))), {i, 0, m - j}]) Sum[(1/k!) (z/2)^(2 k) D[Sin[(1/4) Pi (2 k - 3 \[Nu])]/((z/2)^\[Nu] Gamma[k - \[Nu] + 1]), {\[Nu], j}], {k, 0, Infinity}], {j, 0, m}] - Sum[Binomial[m, j] Pi^(m - j) ((-KroneckerDelta[m - j]) I + (-I)^(m - j + 1) 2^(m - j) (I Cot[Pi \[Nu]] - 1) Sum[((-1)^i i! StirlingS2[m - j, i] (I Cot[Pi \[Nu]] + 1)^i)/2^i, {i, 0, m - j}]) Sum[(1/k!) (z/2)^(2 k) D[((z/2)^\[Nu] Sin[(1/4) Pi (2 k + 3 \[Nu])])/Gamma[k + \[Nu] + 1], {\[Nu], j}], {k, 0, Infinity}], {j, 0, m}]) /; !Element[\[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["m", ",", "0"]], "]"]], "[", "KelvinKei", "]"]], "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List["k", "!"]]], SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["2", " ", "k"]]], RowBox[List["D", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], "\[Nu]"], RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", RowBox[List["3", " ", "\[Nu]"]]]], ")"]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["k", "+", "\[Nu]", "+", "1"]], "]"]]], ",", RowBox[List["{", RowBox[List["\[Nu]", ",", "m"]], "}"]]]], "]"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "m"], " ", RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["m", "-", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], RowBox[List["m", "-", "j", "+", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["m", "-", "j"]]], RowBox[List[FractionBox["1", SuperscriptBox["2", "i"]], RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "i"], " ", RowBox[List["i", "!"]]]], ")"]], " ", RowBox[List["StirlingS2", "[", RowBox[List[RowBox[List["m", "-", "j"]], ",", "i"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]], "+", "1"]], ")"]], "i"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]], "-", "1"]], ")"]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List["m", "-", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "+", "1"]], ")"]], "i"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "-", "1"]], ")"]]]]]], ")"]]]]]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List["k", "!"]]], SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["2", " ", "k"]]], RowBox[List["D", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["-", "\[Nu]"]]], RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", RowBox[List["3", " ", "\[Nu]"]]]], ")"]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["k", "-", "\[Nu]", "+", "1"]], "]"]]], ",", RowBox[List["{", RowBox[List["\[Nu]", ",", "j"]], "}"]]]], "]"]]]]]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "j"]], "]"]], " ", SuperscriptBox["\[Pi]", RowBox[List["m", "-", "j"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["KroneckerDelta", "[", RowBox[List["m", "-", "j"]], "]"]]]], " ", "\[ImaginaryI]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], RowBox[List["m", "-", "j", "+", "1"]]], " ", SuperscriptBox["2", RowBox[List["m", "-", "j"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "-", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["m", "-", "j"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "i"], " ", RowBox[List["i", "!"]], " ", RowBox[List["StirlingS2", "[", RowBox[List[RowBox[List["m", "-", "j"]], ",", "i"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "+", "1"]], ")"]], "i"]]], SuperscriptBox["2", "i"]]]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List["k", "!"]]], SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["2", " ", "k"]]], RowBox[List["D", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], "\[Nu]"], RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", RowBox[List["3", " ", "\[Nu]"]]]], ")"]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["k", "+", "\[Nu]", "+", "1"]], "]"]]], ",", RowBox[List["{", RowBox[List["\[Nu]", ",", "j"]], "}"]]]], "]"]]]]]]]]]]]], ")"]]]]]], "/;", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> kei </mi> <annotation encoding='Mathematica'> TagBox[&quot;kei&quot;, BesselI] </annotation> </semantics> <mi> &#957; </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;m&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> m </mi> </msup> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> m </mi> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#960; </mi> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> i </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> i </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msubsup> <semantics> <mi> &#119982; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[ScriptCapitalS]&quot;, StirlingS2] </annotation> </semantics> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> <mrow> <mo> ( </mo> <mi> i </mi> <mo> ) </mo> </mrow> </msubsup> <mtext> </mtext> </mrow> <msup> <mn> 2 </mn> <mi> i </mi> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cot </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> i </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cot </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cot </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> i </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cot </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> j </mi> </msup> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> j </mi> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cot </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> i </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> i </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msubsup> <semantics> <mi> &#119982; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[ScriptCapitalS]&quot;, StirlingS2] </annotation> </semantics> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> <mrow> <mo> ( </mo> <mi> i </mi> <mo> ) </mo> </mrow> </msubsup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cot </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> i </mi> </msup> </mrow> <msup> <mn> 2 </mn> <mi> i </mi> </msup> </mfrac> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> </msub> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> j </mi> </msup> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> j </mi> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> &#957; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <ci> m </ci> <cn type='integer'> 0 </cn> </list> <apply> <ci> Subscript </ci> <apply> <ci> BesselI </ci> <ci> kei </ci> </apply> <ci> &#957; </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> m </ci> </degree> </bvar> <apply> <times /> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#957; </ci> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> j </ci> </apply> <apply> <times /> <apply> <power /> <pi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> <apply> <factorial /> <ci> i </ci> </apply> <apply> <ci> StirlingS2 </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <ci> i </ci> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cot /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> i </ci> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cot /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cot /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> i </ci> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cot /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> j </ci> </degree> </bvar> <apply> <times /> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> j </ci> </apply> <apply> <power /> <pi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cot /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> <apply> <factorial /> <ci> i </ci> </apply> <apply> <ci> StirlingS2 </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <ci> i </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cot /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> i </ci> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <imaginaryi /> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> j </ci> </degree> </bvar> <apply> <times /> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#957; </ci> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <ci> &#957; </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["KelvinKei", TagBox[RowBox[List["(", RowBox[List["m", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["2", " ", "k"]]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", "m"]], "}"]]]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], "\[Nu]"], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", RowBox[List["3", " ", "\[Nu]"]]]], ")"]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["k", "+", "\[Nu]", "+", "1"]], "]"]]]]]]], RowBox[List["k", "!"]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["m", "-", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], RowBox[List["m", "-", "j", "+", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["m", "-", "j"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "i"], " ", RowBox[List["i", "!"]]]], ")"]], " ", RowBox[List["StirlingS2", "[", RowBox[List[RowBox[List["m", "-", "j"]], ",", "i"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]], "+", "1"]], ")"]], "i"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]], "-", "1"]], ")"]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List["m", "-", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "+", "1"]], ")"]], "i"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "-", "1"]], ")"]]]]]], ")"]]]], SuperscriptBox["2", "i"]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["2", " ", "k"]]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", "j"]], "}"]]]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", RowBox[List["3", " ", "\[Nu]"]]]], ")"]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["k", "-", "\[Nu]", "+", "1"]], "]"]]]]]]], RowBox[List["k", "!"]]]]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "j"]], "]"]], " ", SuperscriptBox["\[Pi]", RowBox[List["m", "-", "j"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["KroneckerDelta", "[", RowBox[List["m", "-", "j"]], "]"]]]], " ", "\[ImaginaryI]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], RowBox[List["m", "-", "j", "+", "1"]]], " ", SuperscriptBox["2", RowBox[List["m", "-", "j"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "-", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["m", "-", "j"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "i"], " ", RowBox[List["i", "!"]], " ", RowBox[List["StirlingS2", "[", RowBox[List[RowBox[List["m", "-", "j"]], ",", "i"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "+", "1"]], ")"]], "i"]]], SuperscriptBox["2", "i"]]]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["2", " ", "k"]]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", "j"]], "}"]]]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], "\[Nu]"], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", RowBox[List["3", " ", "\[Nu]"]]]], ")"]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["k", "+", "\[Nu]", "+", "1"]], "]"]]]]]]], RowBox[List["k", "!"]]]]]]]]]]], ")"]]]], "/;", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02