|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.19.26.0050.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric0F1Regularized[-\[Nu] + 1, (I Sqrt[z])/4]
KelvinKei[\[Nu], z^(1/4)] == 2^(-3 - \[Nu]) E^((3 I Pi \[Nu])/4) Sqrt[Pi]
z^\[Nu] (E^(I Pi \[Nu]) (I MeijerG[{{}, {(1 - 3 \[Nu])/2}},
{{0, 1/2, -(\[Nu]/2)}, {(1 - 3 \[Nu])/2, \[Nu]/2}}, z/64] -
MeijerG[{{}, {-((3 \[Nu])/2)}}, {{0, 1/2, -(\[Nu]/2)},
{-((3 \[Nu])/2), \[Nu]/2}}, z/64]) - (1/(Sqrt[2] Pi))
((I MeijerG[{{1/4, 3/4}, {}}, {{0, (1 - \[Nu])/2, -(\[Nu]/2)},
{1/2, \[Nu]/2, (1 + \[Nu])/2}}, z/16] + MeijerG[{{1/4, 3/4}, {}},
{{1/2, (1 - \[Nu])/2, -(\[Nu]/2)}, {0, \[Nu]/2, (1 + \[Nu])/2}},
z/16])/E^(I Pi \[Nu])))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "+", "1"]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["z"]]], "4"]]], "]"]], " ", RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], "-", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "4"]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", "\[Nu]"], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", FractionBox[RowBox[List["1", "-", RowBox[List["3", " ", "\[Nu]"]]]], "2"], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "-", RowBox[List["3", " ", "\[Nu]"]]]], "2"], ",", FractionBox["\[Nu]", "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "64"]]], "]"]]]], "-", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["-", FractionBox[RowBox[List["3", " ", "\[Nu]"]], "2"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["3", " ", "\[Nu]"]], "2"]]], ",", FractionBox["\[Nu]", "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "64"]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List[SqrtBox["2"], " ", "\[Pi]"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["\[Nu]", "2"], ",", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "16"]]], "]"]]]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", FractionBox["\[Nu]", "2"], ",", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "16"]]], "]"]]]], ")"]]]], ")"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox[OverscriptBox["F", "~"], "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["1", "-", "\[Nu]"]], Hypergeometric0F1Regularized, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["z"]]], "4"], Hypergeometric0F1Regularized, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric0F1Regularized] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <msub> <mi> kei </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> ) </mo> </mrow> </mrow> <mo>  </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 4 </mn> </mfrac> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> ν </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 5 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> z </mi> <mn> 64 </mn> </mfrac> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["1", ",", "5"]], RowBox[List["3", ",", "0"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[FractionBox["z", "64"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], "\[VerticalSeparator]", GridBox[List[List[TagBox[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", " ", "\[Nu]"]]]], ")"]]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["\[Nu]", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", " ", "\[Nu]"]]]], ")"]]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["\[Nu]", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> - </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 5 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> z </mi> <mn> 64 </mn> </mfrac> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["1", ",", "5"]], RowBox[List["3", ",", "0"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[FractionBox["z", "64"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], "\[VerticalSeparator]", GridBox[List[List[TagBox[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["3", " ", "\[Nu]"]], ")"]]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["\[Nu]", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["3", " ", "\[Nu]"]], ")"]]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["\[Nu]", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 6 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> z </mi> <mn> 16 </mn> </mfrac> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "6"]], RowBox[List["3", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[FractionBox["z", "16"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[FractionBox["1", "4"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["3", "4"], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["\[Nu]", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["\[Nu]", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["\[Nu]", "+", "1"]], "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> + </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 6 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> z </mi> <mn> 16 </mn> </mfrac> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "6"]], RowBox[List["3", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[FractionBox["z", "16"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[FractionBox["1", "4"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["3", "4"], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]], List[RowBox[List[TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["\[Nu]", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["0", MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["\[Nu]", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["\[Nu]", "+", "1"]], "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <times /> <apply> <ci> Hypergeometric0F1Regularized </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> KelvinKei </ci> <ci> ν </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> ν </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> MeijerG </ci> <list> <list /> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> </list> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 64 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> MeijerG </ci> <list> <list /> <list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> ν </ci> </apply> </apply> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> ν </ci> </apply> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> </list> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 64 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <pi /> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> MeijerG </ci> <list> <list> <cn type='rational'> 1 <sep /> 4 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> </list> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 16 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <cn type='rational'> 1 <sep /> 4 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </list> <list /> </list> <list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <cn type='integer'> 0 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> </list> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 16 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]_"]], "+", "1"]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["z_"]]], "4"]]], "]"]], " ", RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]_", ",", SuperscriptBox["z_", RowBox[List["1", "/", "4"]]]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], "-", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "4"]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", "\[Nu]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", " ", "\[Nu]"]]]], ")"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", " ", "\[Nu]"]]]], ")"]]]], ",", FractionBox["\[Nu]", "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "64"]]], "]"]]]], "-", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["3", " ", "\[Nu]"]], ")"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["3", " ", "\[Nu]"]], ")"]]]], ",", FractionBox["\[Nu]", "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "64"]]], "]"]]]], ")"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["\[Nu]", "2"], ",", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "16"]]], "]"]]]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", FractionBox["\[Nu]", "2"], ",", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "16"]]], "]"]]]], ")"]]]], RowBox[List[SqrtBox["2"], " ", "\[Pi]"]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|