|  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/03.19.26.0050.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric0F1Regularized[-\[Nu] + 1, (I Sqrt[z])/4] 
  KelvinKei[\[Nu], z^(1/4)] == 2^(-3 - \[Nu]) E^((3 I Pi \[Nu])/4) Sqrt[Pi] 
  z^\[Nu] (E^(I Pi \[Nu]) (I MeijerG[{{}, {(1 - 3 \[Nu])/2}}, 
       {{0, 1/2, -(\[Nu]/2)}, {(1 - 3 \[Nu])/2, \[Nu]/2}}, z/64] - 
     MeijerG[{{}, {-((3 \[Nu])/2)}}, {{0, 1/2, -(\[Nu]/2)}, 
       {-((3 \[Nu])/2), \[Nu]/2}}, z/64]) - (1/(Sqrt[2] Pi)) 
    ((I MeijerG[{{1/4, 3/4}, {}}, {{0, (1 - \[Nu])/2, -(\[Nu]/2)}, 
         {1/2, \[Nu]/2, (1 + \[Nu])/2}}, z/16] + MeijerG[{{1/4, 3/4}, {}}, 
       {{1/2, (1 - \[Nu])/2, -(\[Nu]/2)}, {0, \[Nu]/2, (1 + \[Nu])/2}}, 
       z/16])/E^(I Pi \[Nu]))) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "+", "1"]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["z"]]], "4"]]], "]"]], " ", RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], "-", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "4"]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", "\[Nu]"], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", FractionBox[RowBox[List["1", "-", RowBox[List["3", " ", "\[Nu]"]]]], "2"], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "-", RowBox[List["3", " ", "\[Nu]"]]]], "2"], ",", FractionBox["\[Nu]", "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "64"]]], "]"]]]], "-", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["-", FractionBox[RowBox[List["3", " ", "\[Nu]"]], "2"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["3", " ", "\[Nu]"]], "2"]]], ",", FractionBox["\[Nu]", "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "64"]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List[SqrtBox["2"], " ", "\[Pi]"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["\[Nu]", "2"], ",", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "16"]]], "]"]]]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", FractionBox["\[Nu]", "2"], ",", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "16"]]], "]"]]]], ")"]]]], ")"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 0 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mo>   </mo>  <mo> ; </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox[OverscriptBox["F", "~"], "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["1", "-", "\[Nu]"]], Hypergeometric0F1Regularized, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["z"]]], "4"], Hypergeometric0F1Regularized, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric0F1Regularized] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> kei </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  <mo> ) </mo>  </mrow>  </mrow>  <mo>  </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> - </mo>  <mn> 3 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mfrac>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mn> 4 </mn>  </mfrac>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mi> ν </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mn> 5 </mn>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> , </mo>  <mn> 0 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mi> z </mi>  <mn> 64 </mn>  </mfrac>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["1", ",", "5"]], RowBox[List["3", ",", "0"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[FractionBox["z", "64"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], "\[VerticalSeparator]", GridBox[List[List[TagBox[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", " ", "\[Nu]"]]]], ")"]]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["\[Nu]", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", " ", "\[Nu]"]]]], ")"]]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["\[Nu]", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mn> 5 </mn>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> , </mo>  <mn> 0 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mi> z </mi>  <mn> 64 </mn>  </mfrac>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["1", ",", "5"]], RowBox[List["3", ",", "0"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[FractionBox["z", "64"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], "\[VerticalSeparator]", GridBox[List[List[TagBox[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["3", " ", "\[Nu]"]], ")"]]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["\[Nu]", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["3", " ", "\[Nu]"]], ")"]]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["\[Nu]", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  </msup>  <mtext>   </mtext>  </mrow>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 2 </mn>  <mo> , </mo>  <mn> 6 </mn>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mi> z </mi>  <mn> 16 </mn>  </mfrac>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mfrac>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "6"]], RowBox[List["3", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[FractionBox["z", "16"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[FractionBox["1", "4"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["3", "4"], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["\[Nu]", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["\[Nu]", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["\[Nu]", "+", "1"]], "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 2 </mn>  <mo> , </mo>  <mn> 6 </mn>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mi> z </mi>  <mn> 16 </mn>  </mfrac>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mn> 0 </mn>  <mo> , </mo>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "6"]], RowBox[List["3", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[FractionBox["z", "16"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[FractionBox["1", "4"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["3", "4"], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]], List[RowBox[List[TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["\[Nu]", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["0", MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["\[Nu]", "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["\[Nu]", "+", "1"]], "2"], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <times />  <apply>  <ci> Hypergeometric0F1Regularized </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> KelvinKei </ci>  <ci> ν </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  <cn type='integer'> -3 </cn>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 3 </cn>  <imaginaryi />  <pi />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <ci> ν </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <pi />  <ci> ν </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <apply>  <ci> MeijerG </ci>  <list>  <list />  <list>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> ν </ci>  </apply>  </apply>  </apply>  </apply>  </list>  </list>  <list>  <list>  <cn type='integer'> 0 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </list>  <list>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> ν </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </list>  </list>  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 64 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> MeijerG </ci>  <list>  <list />  <list>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> ν </ci>  </apply>  </apply>  </list>  </list>  <list>  <list>  <cn type='integer'> 0 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </list>  <list>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> ν </ci>  </apply>  </apply>  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </list>  </list>  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 64 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <pi />  <ci> ν </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <apply>  <ci> MeijerG </ci>  <list>  <list>  <cn type='rational'> 1 <sep /> 4 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </list>  <list />  </list>  <list>  <list>  <cn type='integer'> 0 </cn>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </list>  <list>  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </list>  </list>  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 16 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> MeijerG </ci>  <list>  <list>  <cn type='rational'> 1 <sep /> 4 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </list>  <list />  </list>  <list>  <list>  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </list>  <list>  <cn type='integer'> 0 </cn>  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </list>  </list>  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 16 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]_"]], "+", "1"]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["z_"]]], "4"]]], "]"]], " ", RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]_", ",", SuperscriptBox["z_", RowBox[List["1", "/", "4"]]]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], "-", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "4"]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", "\[Nu]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", " ", "\[Nu]"]]]], ")"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", " ", "\[Nu]"]]]], ")"]]]], ",", FractionBox["\[Nu]", "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "64"]]], "]"]]]], "-", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["3", " ", "\[Nu]"]], ")"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["3", " ", "\[Nu]"]], ")"]]]], ",", FractionBox["\[Nu]", "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "64"]]], "]"]]]], ")"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["\[Nu]", "2"], ",", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "16"]]], "]"]]]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", FractionBox["\[Nu]", "2"], ",", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"]]], "}"]]]], "}"]], ",", FractionBox["z", "16"]]], "]"]]]], ")"]]]], RowBox[List[SqrtBox["2"], " ", "\[Pi]"]]]]], ")"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  |