|  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/03.19.27.0004.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | KelvinKei[\[Nu], z] == ((1/4) Pi (-z^4)^((1/4) (-2 - \[Nu])) Csc[Pi \[Nu]] 
    (z^(2 \[Nu]) BesselI[\[Nu], (-z^4)^(1/4)] ((-z^2) Cos[(Pi \[Nu])/4] + 
       Sqrt[-z^4] Sin[(Pi \[Nu])/4]) + z^(2 \[Nu]) 
      BesselJ[\[Nu], (-z^4)^(1/4)] (z^2 Cos[(Pi \[Nu])/4] + 
       Sqrt[-z^4] Sin[(Pi \[Nu])/4]) - (-z^4)^(\[Nu]/2) 
      (BesselI[-\[Nu], (-z^4)^(1/4)] ((-z^2) Cos[(3 Pi \[Nu])/4] + 
         Sqrt[-z^4] Sin[(3 Pi \[Nu])/4]) + BesselJ[-\[Nu], (-z^4)^(1/4)] 
        (z^2 Cos[(3 Pi \[Nu])/4] + Sqrt[-z^4] Sin[(3 Pi \[Nu])/4]))))/
   z^\[Nu] /;  !Element[\[Nu], Integers] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "4"]]], ")"]], RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "-", "\[Nu]"]], ")"]]]]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["BesselI", "[", RowBox[List["\[Nu]", ",", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["1", "/", "4"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "4"]]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["z", RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["1", "/", "4"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "4"]]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["\[Nu]", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["1", "/", "4"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "4"]]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["1", "/", "4"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "4"]]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msub>  <mi> kei </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> csc </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <msub>  <mi> I </mi>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  </msub>  <mo> ( </mo>  <mroot>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mn> 4 </mn>  </mroot>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mn> 4 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mn> 4 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <msub>  <mi> J </mi>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  </msub>  <mo> ( </mo>  <mroot>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mn> 4 </mn>  </mroot>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mn> 4 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msqrt>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mn> 4 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> ν </mi>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> I </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mroot>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mn> 4 </mn>  </mroot>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mn> 4 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mn> 4 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> J </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mroot>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mn> 4 </mn>  </mroot>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mn> 4 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msqrt>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mn> 4 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> ν </mi>  <mo> ∉ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation>  </semantics>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> KelvinKei </ci>  <ci> ν </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <pi />  <apply>  <power />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  <cn type='integer'> -2 </cn>  </apply>  </apply>  </apply>  <apply>  <csc />  <apply>  <times />  <pi />  <ci> ν </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <ci> BesselI </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <sin />  <apply>  <times />  <cn type='integer'> 3 </cn>  <pi />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <cos />  <apply>  <times />  <cn type='integer'> 3 </cn>  <pi />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> BesselJ </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <cos />  <apply>  <times />  <cn type='integer'> 3 </cn>  <pi />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <sin />  <apply>  <times />  <cn type='integer'> 3 </cn>  <pi />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  </apply>  <apply>  <ci> BesselI </ci>  <ci> ν </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <sin />  <apply>  <times />  <pi />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <cos />  <apply>  <times />  <pi />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  </apply>  <apply>  <ci> BesselJ </ci>  <ci> ν </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <cos />  <apply>  <times />  <pi />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <sin />  <apply>  <times />  <pi />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <notin />  <ci> ν </ci>  <integers />  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "4"]]], ")"]], RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "-", "\[Nu]"]], ")"]]]]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["BesselI", "[", RowBox[List["\[Nu]", ",", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["1", "/", "4"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "4"]]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["z", RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["1", "/", "4"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "4"]]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["\[Nu]", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["1", "/", "4"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "4"]]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["1", "/", "4"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "4"]]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "/;", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  |