  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/03.16.20.0003.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    D[KelvinKer[z], {z, n}] == 2^(-1 - 3 (n/2)) (I - 1)^n 
   (Sum[Binomial[n, 2 k] (I (1 - I^n) KelvinKei[4 k - n, z] + 
       (1 + I^n) KelvinKer[4 k - n, z]), {k, 0, Floor[n/2]}] + 
    Sum[Binomial[n, 2 k + 1] ((-I) (1 - I^n) KelvinKei[2 + 4 k - n, z] - 
       (1 + I^n) KelvinKer[2 + 4 k - n, z]), {k, 0, Floor[(n - 1)/2]}]) /; 
 Element[n, Integers] && n >= 0 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]], RowBox[List["KelvinKer", "[", "z", "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["3", RowBox[List["n", "/", "2"]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", "-", "1"]], ")"]], "n"], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List["n", "/", "2"]], "]"]]], " ", RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", RowBox[List["2", "k"]]]], "]"]], RowBox[List["(", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "n"]]], ")"]], " ", RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List[RowBox[List["4", " ", "k"]], "-", "n"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ImaginaryI]", "n"]]], ")"]], " ", RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List[RowBox[List["4", " ", "k"]], "-", "n"]], ",", "z"]], "]"]]]]]], ")"]], ")"]]]]]], "+", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "/", "2"]], "]"]]], " ", RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", RowBox[List[RowBox[List["2", "k"]], "+", "1"]]]], "]"]], RowBox[List["(", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "n"]]], ")"]], " ", RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["4", " ", "k"]], "-", "n"]], ",", "z"]], "]"]]]], "-", " ", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ImaginaryI]", "n"]]], ")"]], " ", RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["4", " ", "k"]], "-", "n"]], ",", "z"]], "]"]]]]]], ")"]], ")"]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mfrac>  <mrow>  <msup>  <mo> ∂ </mo>  <mi> n </mi>  </msup>  <mrow>  <mi> ker </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mo> ∂ </mo>  <msup>  <mi> z </mi>  <mi> n </mi>  </msup>  </mrow>  </mfrac>  <mo>  </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> ⅈ </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mi> n </mi>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List["2", " ", "k"]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> ⅈ </mi>  <mi> n </mi>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> kei </mi>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msup>  <mi> ⅈ </mi>  <mi> n </mi>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> ker </mi>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> ⅈ </mi>  <mi> n </mi>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> kei </mi>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mi> n </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msup>  <mi> ⅈ </mi>  <mi> n </mi>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> ker </mi>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mi> n </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <ci> n </ci>  </degree>  </bvar>  <apply>  <ci> KelvinKer </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> n </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <imaginaryi />  <cn type='integer'> -1 </cn>  </apply>  <ci> n </ci>  </apply>  <apply>  <plus />  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <ci> n </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <imaginaryi />  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <ci> KelvinKei </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <imaginaryi />  <ci> n </ci>  </apply>  </apply>  <apply>  <ci> KelvinKer </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <imaginaryi />  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <ci> KelvinKei </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <imaginaryi />  <ci> n </ci>  </apply>  </apply>  <apply>  <ci> KelvinKer </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> n </ci>  <ci> ℕ </ci>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "n_"]], "}"]]]]], RowBox[List["KelvinKer", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", FractionBox[RowBox[List["3", " ", "n"]], "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", "-", "1"]], ")"]], "n"], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", RowBox[List["2", " ", "k"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "n"]]], ")"]], " ", RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List[RowBox[List["4", " ", "k"]], "-", "n"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ImaginaryI]", "n"]]], ")"]], " ", RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List[RowBox[List["4", " ", "k"]], "-", "n"]], ",", "z"]], "]"]]]]]], ")"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["n", "-", "1"]], "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ImaginaryI]", "n"]]], ")"]], " ", RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["4", " ", "k"]], "-", "n"]], ",", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ImaginaryI]", "n"]]], ")"]], " ", RowBox[List["KelvinKer", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["4", " ", "k"]], "-", "n"]], ",", "z"]], "]"]]]]]], ")"]]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |