|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.09.06.0053.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
StruveH[\[Nu], z] \[Proportional] ((-1)^(1 + \[Nu])/Sqrt[-2 Pi z])
(Exp[(-I) z - ((2 \[Nu] + 3)/4) Pi I] (1 - (I (-1 + 4 \[Nu]^2))/(8 z) -
(9 - 40 \[Nu]^2 + 16 \[Nu]^4)/(128 z^2) + \[Ellipsis]) +
Exp[I z + ((2 \[Nu] + 3)/4) Pi I] (1 + (I (-1 + 4 \[Nu]^2))/(8 z) -
(9 - 40 \[Nu]^2 + 16 \[Nu]^4)/(128 z^2) + \[Ellipsis])) +
((2^(1 - \[Nu]) (-1)^(1 + \[Nu]) (-z)^(\[Nu] - 1))/
(Sqrt[Pi] Gamma[1/2 + \[Nu]])) (1 + (-1 + 2 \[Nu])/z^2 +
(3 (3 - 8 \[Nu] + 4 \[Nu]^2))/z^4 + \[Ellipsis]) /;
Inequality[0, Less, Arg[z], LessEqual, Pi] && (Abs[z] -> Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["StruveH", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "+", "\[Nu]"]]], " "]], SqrtBox[RowBox[List[RowBox[List["-", "2"]], "\[Pi]", " ", "z"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Exp", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", "\[Nu]"]], "+", "3"]], "4"], " ", "\[Pi]", " ", "\[ImaginaryI]"]]]], "]"]], RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]]]], RowBox[List["8", " ", "z"]]], "-", FractionBox[RowBox[List["9", "-", RowBox[List["40", " ", SuperscriptBox["\[Nu]", "2"]]], "+", RowBox[List["16", " ", SuperscriptBox["\[Nu]", "4"]]]]], RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[RowBox[List["Exp", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", "\[Nu]"]], "+", "3"]], "4"], " ", "\[Pi]", " ", "\[ImaginaryI]"]]]], "]"]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]]]], RowBox[List["8", " ", "z"]]], "-", FractionBox[RowBox[List["9", "-", RowBox[List["40", " ", SuperscriptBox["\[Nu]", "2"]]], "+", RowBox[List["16", " ", SuperscriptBox["\[Nu]", "4"]]]]], RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "+", "\[Nu]"]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["\[Nu]", "-", "1"]]]]], RowBox[List[SqrtBox["\[Pi]"], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], "]"]]]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], SuperscriptBox["z", "2"]], "+", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["8", " ", "\[Nu]"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]]]], SuperscriptBox["z", "4"]], "+", "\[Ellipsis]"]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["0", "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "\[Pi]"]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ν </mi> </mrow> </msup> <mtext> </mtext> </mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mrow> <mn> 128 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mrow> <mn> 128 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> ν </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mn> 0 </mn> <mo> < </mo> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ≤ </mo> <mi> π </mi> </mrow> <mo> ∧ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> StruveH </ci> <ci> ν </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -2 </cn> <pi /> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 3 </cn> </apply> <pi /> <imaginaryi /> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 9 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> … </ci> </apply> </apply> <apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 3 </cn> </apply> <pi /> <imaginaryi /> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 9 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> … </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <plus /> <ci> ν </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> ν </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Inequality </ci> <cn type='integer'> 0 </cn> <lt /> <apply> <arg /> <ci> z </ci> </apply> <leq /> <pi /> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["StruveH", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], "-", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "3"]], ")"]], " ", "\[Pi]", " ", "\[ImaginaryI]"]]]]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]]]], RowBox[List["8", " ", "z"]]], "-", FractionBox[RowBox[List["9", "-", RowBox[List["40", " ", SuperscriptBox["\[Nu]", "2"]]], "+", RowBox[List["16", " ", SuperscriptBox["\[Nu]", "4"]]]]], RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "3"]], ")"]], " ", "\[Pi]", " ", "\[ImaginaryI]"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]]]], RowBox[List["8", " ", "z"]]], "-", FractionBox[RowBox[List["9", "-", RowBox[List["40", " ", SuperscriptBox["\[Nu]", "2"]]], "+", RowBox[List["16", " ", SuperscriptBox["\[Nu]", "4"]]]]], RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], ")"]]]], SqrtBox[RowBox[List[RowBox[List["-", "2"]], " ", "\[Pi]", " ", "z"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "+", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["\[Nu]", "-", "1"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], SuperscriptBox["z", "2"]], "+", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["8", " ", "\[Nu]"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]]]], SuperscriptBox["z", "4"]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], "]"]]]]]]], "/;", RowBox[List[RowBox[List["0", "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "\[Pi]"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|