Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











StruveH






Mathematica Notation

Traditional Notation









Bessel-Type Functions > StruveH[nu,z] > Integral representations > Contour integral representations





http://functions.wolfram.com/03.09.07.0004.01









  


  










Input Form





StruveH[\[Nu], x] == (1/(2 Pi I)) Integrate[((Gamma[s] Gamma[1 - s])/(Gamma[3/2 - s] Gamma[\[Nu] + 3/2 - s])) (x/2)^(-2 s + \[Nu] + 1), {s, \[Gamma] - I Infinity, \[Gamma] + I Infinity}] /; 0 < \[Gamma] < Min[1, 5/4 + Re[\[Nu]]/2] && x > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["StruveH", "[", RowBox[List["\[Nu]", ",", "x"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]]], RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["\[Gamma]", "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], RowBox[List["\[Gamma]", "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "s"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "-", "s"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", FractionBox["3", "2"], "-", "s"]], "]"]]]]], SuperscriptBox[RowBox[List["(", FractionBox["x", "2"], ")"]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], "s"]], "+", "\[Nu]", "+", "1"]]], RowBox[List["\[DifferentialD]", "s"]]]]]]]]]], "/;", RowBox[List[RowBox[List["0", "<", "\[Gamma]", "<", RowBox[List["Min", "[", RowBox[List["1", ",", RowBox[List[FractionBox["5", "4"], "+", FractionBox[RowBox[List["Re", "[", "\[Nu]", "]"]], "2"]]]]], "]"]]]], "\[And]", RowBox[List["x", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mrow> <mi> &#947; </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#8734; </mi> </mrow> </mrow> <mrow> <mi> &#947; </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#8734; </mi> </mrow> </mrow> </msubsup> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> x </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> s </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mi> &#947; </mi> <mo> &lt; </mo> <mrow> <mi> min </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#957; </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> x </mi> <mo> &gt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> StruveH </ci> <ci> &#957; </ci> <ci> x </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> s </ci> </bvar> <lowlimit> <apply> <plus /> <ci> &#947; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <infinity /> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <plus /> <ci> &#947; </ci> <apply> <times /> <imaginaryi /> <infinity /> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> s </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> x </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> s </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <cn type='integer'> 0 </cn> <ci> &#947; </ci> <apply> <min /> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <apply> <real /> <ci> &#957; </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <gt /> <ci> x </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["StruveH", "[", RowBox[List["\[Nu]_", ",", "x_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["\[Gamma]", "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], RowBox[List["\[Gamma]", "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "s"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["x", "2"], ")"]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "\[Nu]", "+", "1"]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "-", "s"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", FractionBox["3", "2"], "-", "s"]], "]"]]]]], RowBox[List["\[DifferentialD]", "s"]]]]]], RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]]], "/;", RowBox[List[RowBox[List["0", "<", "\[Gamma]", "<", RowBox[List["Min", "[", RowBox[List["1", ",", RowBox[List[FractionBox["5", "4"], "+", FractionBox[RowBox[List["Re", "[", "\[Nu]", "]"]], "2"]]]]], "]"]]]], "&&", RowBox[List["x", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29