|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.09.17.0013.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
StruveH[\[Nu], z] == (2^(n - 1) Pochhammer[1 + \[Nu], n - 1]
(2 (n + \[Nu]) HypergeometricPFQ[{1, (1 - n)/2, -(n/2)},
{1, -n, -n - \[Nu], 1 + \[Nu]}, -z^2] StruveH[n + \[Nu], z] -
z HypergeometricPFQ[{1, (1 - n)/2, 1 - n/2}, {1, 1 - n, 1 - n - \[Nu],
1 + \[Nu]}, -z^2] StruveH[1 + n + \[Nu], z]))/z^n +
((2^(-1 - \[Nu]) z^(1 + \[Nu]))/Sqrt[Pi])
Sum[(Pochhammer[1 + \[Nu], j]/Gamma[5/2 + j + \[Nu]])
HypergeometricPFQ[{1, (1 - j)/2, -(j/2)}, {1, -j, -j - \[Nu],
1 + \[Nu]}, -z^2], {j, 0, n - 1}] /; Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["StruveH", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List["n", "-", "1"]]], " ", SuperscriptBox["z", RowBox[List["-", "n"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["n", "-", "1"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["1", "-", "n"]], "2"], ",", RowBox[List["-", FractionBox["n", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["-", "n"]], ",", RowBox[List[RowBox[List["-", "n"]], "-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List[RowBox[List["n", "+", "\[Nu]"]], ",", "z"]], "]"]]]], "-", RowBox[List["z", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["1", "-", "n"]], "2"], ",", RowBox[List["1", "-", FractionBox["n", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["1", "-", "n"]], ",", RowBox[List["1", "-", "n", "-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List[RowBox[List["1", "+", "n", "+", "\[Nu]"]], ",", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["1", "+", "\[Nu]"]]]]], SqrtBox["\[Pi]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "j"]], "]"]], " "]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["5", "2"], "+", "j", "+", "\[Nu]"]], "]"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["1", "-", "j"]], "2"], ",", RowBox[List["-", FractionBox["j", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["-", "j"]], ",", RowBox[List[RowBox[List["-", "j"]], "-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[SuperscriptBox["z", RowBox[List["-", "n"]]], "(", RowBox[List["\[Nu]", "+", "1"]], ")"]], RowBox[List["n", "-", "1"]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 4 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> , </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["1", "-", "n"]], "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["-", FractionBox["n", "2"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["-", "n"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", "n"]], "-", "\[Nu]"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Nu]", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", SuperscriptBox["z", "2"]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mrow> <mi> n </mi> <mo> + </mo> <mi> ν </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> z </mi> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 4 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mo> , </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["1", "-", "n"]], "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", FractionBox["n", "2"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "n"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "n", "-", "\[Nu]"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Nu]", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", SuperscriptBox["z", "2"]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mrow> <mi> n </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <msqrt> <mi> π </mi> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]], "j"], Pochhammer] </annotation> </semantics> <mtext> </mtext> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 4 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> j </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> j </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> , </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["1", "-", "j"]], "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["-", FractionBox["j", "2"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["-", "j"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", "j"]], "-", "\[Nu]"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["\[Nu]", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", SuperscriptBox["z", "2"]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> StruveH </ci> <ci> ν </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <ci> Subscript </ci> <apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <ci> ν </ci> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> StruveH </ci> <apply> <plus /> <ci> n </ci> <ci> ν </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <list> <cn type='integer'> 1 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> StruveH </ci> <apply> <plus /> <ci> n </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> j </ci> <ci> ν </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> j </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["StruveH", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List["n", "-", "1"]]], " ", SuperscriptBox["z", RowBox[List["-", "n"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["n", "-", "1"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["1", "-", "n"]], "2"], ",", RowBox[List["-", FractionBox["n", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["-", "n"]], ",", RowBox[List[RowBox[List["-", "n"]], "-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List[RowBox[List["n", "+", "\[Nu]"]], ",", "z"]], "]"]]]], "-", RowBox[List["z", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["1", "-", "n"]], "2"], ",", RowBox[List["1", "-", FractionBox["n", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["1", "-", "n"]], ",", RowBox[List["1", "-", "n", "-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List[RowBox[List["1", "+", "n", "+", "\[Nu]"]], ",", "z"]], "]"]]]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["1", "+", "\[Nu]"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "j"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["1", "-", "j"]], "2"], ",", RowBox[List["-", FractionBox["j", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["-", "j"]], ",", RowBox[List[RowBox[List["-", "j"]], "-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["5", "2"], "+", "j", "+", "\[Nu]"]], "]"]]]]]]], SqrtBox["\[Pi]"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|