|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.10.06.0068.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
StruveL[\[Nu], z] \[Proportional]
(Sqrt[2/Pi] z^(\[Nu] + 1) ((-(Sin[((2 \[Nu] + 1)/4) Pi] Cosh[z] +
(z/Sqrt[-z^2]) Cos[((2 \[Nu] + 1)/4) Pi] Sinh[z]))
HypergeometricPFQ[{(1 - 2 \[Nu])/4, (3 - 2 \[Nu])/4, (1 + 2 \[Nu])/4,
(3 + 2 \[Nu])/4}, {1/2}, 1/z^2] + ((4 \[Nu]^2 - 1)/8)
((1/Sqrt[-z^2]) Cos[((2 \[Nu] + 1)/4) Pi] Cosh[z] +
(1/z) Sin[((2 \[Nu] + 1)/4) Pi] Sinh[z]) HypergeometricPFQ[
{(3 - 2 \[Nu])/4, (5 - 2 \[Nu])/4, (3 + 2 \[Nu])/4, (5 + 2 \[Nu])/4},
{3/2}, 1/z^2]))/(-z^2)^((3 + 2 \[Nu])/4) -
((2^(1 - \[Nu]) z^(\[Nu] - 1))/(Sqrt[Pi] Gamma[1/2 + \[Nu]]))
HypergeometricPFQ[{1, 1/2, 1/2 - \[Nu]}, {}, 4/z^2] /;
(Abs[z] -> Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["StruveL", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[SqrtBox[FractionBox["2", "\[Pi]"]], SuperscriptBox["z", RowBox[List["\[Nu]", "+", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["-", FractionBox[RowBox[List["3", "+", RowBox[List["2", "\[Nu]"]]]], "4"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Sin", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", "\[Nu]"]], "+", "1"]], "4"], " ", "\[Pi]"]], "]"]], RowBox[List["Cosh", "[", "z", "]"]]]], "+", RowBox[List[FractionBox["z", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]], RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", "\[Nu]"]], "+", "1"]], "4"], " ", "\[Pi]"]], "]"]], " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], ")"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "-", RowBox[List["2", "\[Nu]"]]]], "4"], ",", FractionBox[RowBox[List["3", "-", RowBox[List["2", "\[Nu]"]]]], "4"], ",", FractionBox[RowBox[List["1", "+", RowBox[List["2", "\[Nu]"]]]], "4"], ",", FractionBox[RowBox[List["3", "+", RowBox[List["2", "\[Nu]"]]]], "4"]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", FractionBox["1", SuperscriptBox["z", "2"]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]], "-", "1"]], "8"], RowBox[List["(", " ", RowBox[List[RowBox[List[FractionBox["1", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]], RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", "\[Nu]"]], "+", "1"]], "4"], " ", "\[Pi]"]], "]"]], RowBox[List["Cosh", "[", "z", "]"]]]], "+", RowBox[List[FractionBox["1", "z"], RowBox[List["Sin", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", "\[Nu]"]], "+", "1"]], "4"], " ", "\[Pi]"]], "]"]], RowBox[List["Sinh", "[", "z", "]"]]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["3", "-", RowBox[List["2", "\[Nu]"]]]], "4"], ",", FractionBox[RowBox[List["5", "-", RowBox[List["2", "\[Nu]"]]]], "4"], ",", FractionBox[RowBox[List["3", "+", RowBox[List["2", "\[Nu]"]]]], "4"], ",", FractionBox[RowBox[List["5", "+", RowBox[List["2", "\[Nu]"]]]], "4"]]], "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", FractionBox["1", SuperscriptBox["z", "2"]]]], "]"]]]]]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["\[Nu]", "-", "1"]]]]], RowBox[List[SqrtBox["\[Pi]"], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], "]"]]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox["1", "2"], ",", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "}"]], ",", FractionBox["4", SuperscriptBox["z", "2"]]]], "]"]]]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> L </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveL </ci> </annotation-xml> </semantics> </mstyle> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <msqrt> <mfrac> <mn> 2 </mn> <mi> π </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mi> z </mi> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "3"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["1", SuperscriptBox["z", "2"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "3"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "5"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["1", SuperscriptBox["z", "2"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> ν </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 0 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> ν </mi> </mrow> </mrow> <mo> ; </mo> <mo>   </mo> <mo> ; </mo> <mfrac> <mn> 4 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["0", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["4", SuperscriptBox["z", "2"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> StruveL </ci> <ci> ν </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <cos /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <pi /> </apply> </apply> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <sin /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <pi /> </apply> </apply> <apply> <cosh /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <cos /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <pi /> </apply> </apply> <apply> <cosh /> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sin /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <pi /> </apply> </apply> <apply> <sinh /> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 5 </cn> </apply> </apply> </list> <list> <cn type='rational'> 3 <sep /> 2 </cn> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </list> <list /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["StruveL", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SqrtBox[FractionBox["2", "\[Pi]"]], " ", SuperscriptBox["z", RowBox[List["\[Nu]", "+", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["Cosh", "[", "z", "]"]]]], "+", FractionBox[RowBox[List["z", " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["Sinh", "[", "z", "]"]]]], SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]]], ")"]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", FractionBox["1", SuperscriptBox["z", "2"]]]], "]"]]]], "+", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["Cosh", "[", "z", "]"]]]], SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]], "+", FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["Sinh", "[", "z", "]"]]]], "z"]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", FractionBox["1", SuperscriptBox["z", "2"]]]], "]"]]]]]], ")"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["\[Nu]", "-", "1"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox["1", "2"], ",", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "}"]], ",", FractionBox["4", SuperscriptBox["z", "2"]]]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], "]"]]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|