|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.10.21.0013.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[(t^(\[Alpha] - 1) StruveL[\[Nu], b t])/E^(a t),
{t, 0, Infinity}] == ((a^(-1 - \[Alpha] - \[Nu]) b^(1 + \[Nu])
Gamma[1 + \[Alpha] + \[Nu]])/(2^\[Nu] (Sqrt[Pi] Gamma[3/2 + \[Nu]])))
HypergeometricPFQ[{1, (1/2) (2 + \[Alpha] + \[Nu]),
(1/2) (1 + \[Alpha] + \[Nu])}, {3/2 + \[Nu], 3/2}, b^2/a^2] /;
Re[\[Alpha] + \[Nu]] > -1 && Re[a] > Abs[Re[b]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[SuperscriptBox["t", RowBox[List["\[Alpha]", "-", "1"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "a"]], " ", "t"]]], " ", RowBox[List["StruveL", "[", RowBox[List["\[Nu]", ",", RowBox[List["b", " ", "t"]]]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["a", RowBox[List[RowBox[List["-", "1"]], "-", "\[Alpha]", "-", "\[Nu]"]]], " ", SuperscriptBox["b", RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Alpha]", "+", "\[Nu]"]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], "]"]]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "\[Alpha]", "+", "\[Nu]"]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "\[Alpha]", "+", "\[Nu]"]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ",", FractionBox["3", "2"]]], "}"]], ",", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["a", "2"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["\[Alpha]", "+", "\[Nu]"]], "]"]], ">", RowBox[List["-", "1"]]]], "\[And]", RowBox[List[RowBox[List["Re", "[", "a", "]"]], ">", RowBox[List["Abs", "[", RowBox[List["Re", "[", "b", "]"]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> ∞ </mi> </msubsup> <mrow> <mrow> <msup> <mi> t </mi> <mrow> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <mi> t </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> L </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveL </ci> </annotation-xml> </semantics> </mstyle> <mi> ν </mi> </msub> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> <mo> - </mo> <mi> ν </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["\[Alpha]", "+", "\[Nu]", "+", "2"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["\[Alpha]", "+", "\[Nu]", "+", "1"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Nu]", "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["a", "2"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> > </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <ci> t </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> t </ci> </apply> </apply> <apply> <ci> StruveL </ci> <ci> ν </ci> <apply> <times /> <ci> b </ci> <ci> t </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> b </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> α </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> α </ci> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> α </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </list> <list> <apply> <plus /> <ci> ν </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </list> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <real /> <apply> <plus /> <ci> α </ci> <ci> ν </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <gt /> <apply> <real /> <ci> a </ci> </apply> <apply> <abs /> <apply> <real /> <ci> b </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["t_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "a_"]], " ", "t_"]]], " ", RowBox[List["StruveL", "[", RowBox[List["\[Nu]_", ",", RowBox[List["b_", " ", "t_"]]]], "]"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["a", RowBox[List[RowBox[List["-", "1"]], "-", "\[Alpha]", "-", "\[Nu]"]]], " ", SuperscriptBox["b", RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Alpha]", "+", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "\[Alpha]", "+", "\[Nu]"]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "\[Alpha]", "+", "\[Nu]"]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ",", FractionBox["3", "2"]]], "}"]], ",", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["a", "2"]]]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], "]"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["\[Alpha]", "+", "\[Nu]"]], "]"]], ">", RowBox[List["-", "1"]]]], "&&", RowBox[List[RowBox[List["Re", "[", "a", "]"]], ">", RowBox[List["Abs", "[", RowBox[List["Re", "[", "b", "]"]], "]"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|