Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ComplexInfinity






Mathematica Notation

Traditional Notation









Constants > ComplexInfinity > Introduction to the symbols





General


The concepts of indeterminate, infinity, and directed infinity surfaced in mathematics on an intuitive level many centuries ago. For example, it was clear that it was not possible to find the largest integer. Euclid already proved that the largest prime number ( in modern notations) does not exist.

The modern mathematical symbol arose with the development of calculus. J. Wallis (1655) introduced the sign to signify infinite numbers. Subsequently many mathematicians started to use this or similar symbols. In the twentieth century, K. Weierstrass (1876) used the symbol ∞ to represent an actual infinite quantity.

The mathematical symbols used to designate an indeterminant quantity also came from calculus. L'Hospital (1696) treated the sign 0/0 as an indeterminate value. Later, J. Bernoulli (1704, 1730), G. Cramer (1732), J. D'Alembert (1754), and others extensively discussed the symbol 0/0 and tried to introduce special notation for it. The appearance of the modern definition of a limit allowed for an evolving understanding of indeterminate quantities, like to have all possible values of the double limit of , when variables and tend to be independently (at different rates).