|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/02.05.08.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E == 2 Product[((2 k + 2^j + 2)/(2 k + 2^j + 1))^(1/2^j), {j, 1, Infinity},
{k, 0, 2^(j - 1) - 1}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List["\[ExponentialE]", "\[Equal]", RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "0"]], RowBox[List[SuperscriptBox["2", RowBox[List["j", "-", "1"]]], "-", "1"]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", SuperscriptBox["2", "j"], "+", "2"]], RowBox[List[RowBox[List["2", " ", "k"]], "+", SuperscriptBox["2", "j"], "+", "1"]]], ")"]], FractionBox["1", SuperscriptBox["2", "j"]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mi> ⅇ </mi> <mo> ⩵ </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <msup> <mn> 2 </mn> <mi> j </mi> </msup> <mo> + </mo> <mn> 2 </mn> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <msup> <mn> 2 </mn> <mi> j </mi> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mfrac> <mn> 1 </mn> <msup> <mn> 2 </mn> <mi> j </mi> </msup> </mfrac> </msup> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> j </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "\[ExponentialE]", "]"]], "\[RuleDelayed]", RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "0"]], RowBox[List[SuperscriptBox["2", RowBox[List["j", "-", "1"]]], "-", "1"]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", SuperscriptBox["2", "j"], "+", "2"]], RowBox[List[RowBox[List["2", " ", "k"]], "+", SuperscriptBox["2", "j"], "+", "1"]]], ")"]], FractionBox["1", SuperscriptBox["2", "j"]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|