| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/02.05.08.0007.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | E == 2 Product[((2^(k - 1) Product[2 j, {j, 2^(k - 2) + 1, 2^(k - 1) - 1}]^2 
      2^k)/Product[2 j + 1, {j, 2^(k - 2), 2^(k - 1) - 1}]^2)^(1/2^k), 
   {k, 1, Infinity}] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List["\[ExponentialE]", "\[Equal]", RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["k", "-", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List[SuperscriptBox["2", RowBox[List["k", "-", "2"]]], "+", "1"]]]], RowBox[List[SuperscriptBox["2", RowBox[List["k", "-", "1"]]], "-", "1"]]], RowBox[List["2", " ", "j"]]]], ")"]], "2"], " ", SuperscriptBox["2", "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", SuperscriptBox["2", RowBox[List["k", "-", "2"]]]]], RowBox[List[SuperscriptBox["2", RowBox[List["k", "-", "1"]]], "-", "1"]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]], ")"]]]], ")"]], "2"]], ")"]], FractionBox["1", SuperscriptBox["2", "k"]]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mi> ⅇ </mi>  <mo> ⩵ </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mi> k </mi>  </msup>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  <mo> ) </mo>  </mrow>  <mfrac>  <mn> 1 </mn>  <msup>  <mn> 2 </mn>  <mi> k </mi>  </msup>  </mfrac>  </msup>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <product />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <product />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <apply>  <plus />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> -2 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </lowlimit>  <uplimit>  <apply>  <plus />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> j </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <product />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> -2 </cn>  </apply>  </apply>  </lowlimit>  <uplimit>  <apply>  <plus />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "\[ExponentialE]", "]"]], "\[RuleDelayed]", RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["k", "-", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List[SuperscriptBox["2", RowBox[List["k", "-", "2"]]], "+", "1"]]]], RowBox[List[SuperscriptBox["2", RowBox[List["k", "-", "1"]]], "-", "1"]]], RowBox[List["2", " ", "j"]]]], ")"]], "2"], " ", SuperscriptBox["2", "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", SuperscriptBox["2", RowBox[List["k", "-", "2"]]]]], RowBox[List[SuperscriptBox["2", RowBox[List["k", "-", "1"]]], "-", "1"]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]], ")"]]]], ")"]], "2"]], ")"]], FractionBox["1", SuperscriptBox["2", "k"]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |