|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/02.05.09.0009.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E == Limit[Product[Prime[k], {k, PrimePi[n]}]^(1/Prime[n]), n -> Infinity]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List["\[ExponentialE]", "\[Equal]", RowBox[List["Limit", "[", RowBox[List[SuperscriptBox[RowBox[List["Product", "[", RowBox[List[RowBox[List["Prime", "[", "k", "]"]], ",", " ", RowBox[List["{", RowBox[List["k", ",", " ", RowBox[List["PrimePi", "[", "n", "]"]]]], "}"]]]], "]"]], FractionBox["1", RowBox[List["Prime", "[", "n", "]"]]]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mi> ⅇ </mi> <mo> ⩵ </mo> <mrow> <munder> <mi> lim </mi> <mrow> <mi> n </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> </munder> <mo> ⁢ </mo> <mtext>   </mtext> <msup> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <semantics> <mi> π </mi> <annotation encoding='Mathematica'> TagBox["\[Pi]", PrimePi] </annotation> </semantics> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </munderover> <msub> <mi> p </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mfrac> <mn> 1 </mn> <msub> <mi> p </mi> <mi> n </mi> </msub> </mfrac> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <exponentiale /> <apply> <limit /> <bvar> <ci> n </ci> </bvar> <condition> <apply> <tendsto /> <ci> n </ci> <infinity /> </apply> </condition> <apply> <power /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <ci> PrimePi </ci> <ci> n </ci> </apply> </uplimit> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "\[ExponentialE]", "]"]], "\[RuleDelayed]", RowBox[List["Limit", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], RowBox[List["PrimePi", "[", "n", "]"]]], RowBox[List["Prime", "[", "k", "]"]]]], ")"]], FractionBox["1", RowBox[List["Prime", "[", "n", "]"]]]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|