|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.16.06.0046.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcCot[z] == Subscript[F, Infinity][z] /;
Subscript[F, n][z] == -((I Log[2])/2) + (I/2) Log[(-I) (z - I)] -
((z - I)/4) Sum[((I/2)^k (z - I)^k)/(1 + k), {k, 0, n}] ==
((2^(-n - 3) I^(n + 1) (z - I)^(2 + n))/(n + 2))
Hypergeometric2F1[1, 2 + n, 3 + n, (I (z - I))/2] +
(I/2) Log[(-I) (z - I)] - (I/2) Log[(-I) (z + I)] &&
Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcCot", "[", "z", "]"]], "\[Equal]", RowBox[List[SubscriptBox["F", "\[Infinity]"], "[", "z", "]"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["F", "n"], "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", "2", "]"]]]], "2"]]], "+", RowBox[List[FractionBox["\[ImaginaryI]", "2"], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["z", "-", "\[ImaginaryI]"]], "4"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["\[ImaginaryI]", "2"], ")"]], "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]], "k"]]], RowBox[List["1", "+", "k"]]]]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "-", "3"]]], " ", SuperscriptBox["\[ImaginaryI]", RowBox[List["n", "+", "1"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]], RowBox[List["2", "+", "n"]]]]], RowBox[List["n", "+", "2"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", RowBox[List["2", "+", "n"]], ",", RowBox[List["3", "+", "n"]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]]]], "2"]]], "]"]]]], "+", RowBox[List[FractionBox["\[ImaginaryI]", "2"], RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]]]], "]"]]]], "-", RowBox[List[FractionBox["\[ImaginaryI]", "2"], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["z", "+", "\[ImaginaryI]"]], ")"]]]], "]"]]]]]]]], ")"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> cot </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <msub> <mi> F </mi> <mi> ∞ </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> F </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <mfrac> <mrow> <mtext> </mtext> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅈ </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", "2"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["n", "+", "3"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]]]], "2"], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <arccot /> <ci> z </ci> </apply> <apply> <apply> <ci> Subscript </ci> <ci> F </ci> <infinity /> </apply> <ci> z </ci> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> F </ci> <ci> n </ci> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <imaginaryi /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <imaginaryi /> <apply> <ln /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <apply> <power /> <imaginaryi /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <imaginaryi /> <apply> <ln /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <imaginaryi /> <apply> <ln /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> z </ci> <imaginaryi /> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCot", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SubscriptBox["F", "\[Infinity]"], "[", "z", "]"]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["F", "n"], "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", "2", "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]]]], "]"]]]], "-", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["\[ImaginaryI]", "2"], ")"]], "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]], "k"]]], RowBox[List["1", "+", "k"]]]]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "-", "3"]]], " ", SuperscriptBox["\[ImaginaryI]", RowBox[List["n", "+", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]], RowBox[List["2", "+", "n"]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", RowBox[List["2", "+", "n"]], ",", RowBox[List["3", "+", "n"]], ",", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]]]]]], "]"]]]], RowBox[List["n", "+", "2"]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]]]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["z", "+", "\[ImaginaryI]"]], ")"]]]], "]"]]]]]]]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|