Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCot






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCot[z] > Transformations > Related transformations > Sums involving the direct function > Involving sinh-1(z)





http://functions.wolfram.com/01.16.16.0209.01









  


  










Input Form





ArcCot[x] + I ArcSinh[y] == -ArcCot[((-1)^Floor[1/2 - Arg[(I y + Sqrt[1 + y^2]/x)/Sqrt[1 + 1/x^2]]/Pi] ((I y)/x - Sqrt[1 + y^2]))/(Sqrt[1 + 1/x^2] Sqrt[1 - ((I y)/x - Sqrt[1 + y^2])^2/(1 + 1/x^2)])] + (1/2) Pi ((-1)^(Floor[1/2 + Arg[(I y)/x - Sqrt[1 + y^2]]/Pi - Arg[1 + 1/x^2]/(2 Pi)] + Floor[1/2 - Arg[(I y + Sqrt[1 + y^2]/x)/Sqrt[1 + 1/x^2]]/Pi]) + (-1)^Floor[1/2 - Arg[(I y + Sqrt[1 + y^2]/x)/Sqrt[1 + 1/x^2]]/Pi] + 2 (1 + (-1)^Floor[1/2 - Arg[(I y + Sqrt[1 + y^2]/x)/Sqrt[1 + 1/x^2]]/Pi]) Floor[(Arg[(I - 1/x)/Sqrt[1 + 1/x^2]] + Arg[-y + Sqrt[1 + y^2]])/ (2 Pi)] - 2 (-1 + (-1)^Floor[1/2 - Arg[(I y + Sqrt[1 + y^2]/x)/Sqrt[1 + 1/x^2]]/ Pi]) Floor[1/2 - (Arg[(I - 1/x)/Sqrt[1 + 1/x^2]] + Arg[-y + Sqrt[1 + y^2]])/(2 Pi)])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcCot", "[", "x", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", "y", "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["ArcCot", "[", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", FractionBox[SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]], "x"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "y"]], "x"], "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]], ")"]]]], RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "y"]], "x"], "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]], ")"]], "2"], RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "+", FractionBox[RowBox[List["Arg", "[", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "y"]], "x"], "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]], "]"]], "\[Pi]"], "-", FractionBox[RowBox[List["Arg", "[", RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", FractionBox[SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]], "x"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", FractionBox[SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]], "x"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", FractionBox[SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]], "x"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["1", "x"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "y"]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", FractionBox[SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]], "x"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]]]], ")"]], " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List[RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["1", "x"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "y"]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> cot </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> <mo> + </mo> <mfrac> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mi> x </mi> </mfrac> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> <mo> + </mo> <mfrac> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mi> x </mi> </mfrac> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> <mo> + </mo> <mfrac> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mi> x </mi> </mfrac> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> <mi> x </mi> </mfrac> <mo> - </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> <mo> + </mo> <mfrac> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mi> x </mi> </mfrac> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> cot </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> <mo> + </mo> <mfrac> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mi> x </mi> </mfrac> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> <mi> x </mi> </mfrac> <mo> - </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> <mi> x </mi> </mfrac> <mo> - </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </mfrac> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <arccot /> <ci> x </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <ci> y </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <floor /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> y </ci> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arccot /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> y </ci> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> y </ci> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["ArcCot", "[", "x_", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", "y_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", RowBox[List["ArcCot", "[", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", FractionBox[SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]], "x"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "y"]], "x"], "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]], ")"]]]], RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "y"]], "x"], "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]], ")"]], "2"], RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "+", FractionBox[RowBox[List["Arg", "[", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "y"]], "x"], "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]], "]"]], "\[Pi]"], "-", FractionBox[RowBox[List["Arg", "[", RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", FractionBox[SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]], "x"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", FractionBox[SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]], "x"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", FractionBox[SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]], "x"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["1", "x"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "y"]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", FractionBox[SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]], "x"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]]]], ")"]], " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List[RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["1", "x"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "y"]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02