Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCot






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCot[z] > Representations through equivalent functions > With related functions > Involving csc-1 > Involving cot-1(z) > Involving cot-1(z) and csc-1((2(1+z2)1/2/((1+z2)1/2+1))1/2)





http://functions.wolfram.com/01.16.27.0868.01









  


  










Input Form





ArcCot[z] == 2 (Sqrt[z^2]/z) ArcCsc[Sqrt[(2 Sqrt[1 + z^2])/(Sqrt[1 + z^2] + 1)]] - (Pi/2) (Sqrt[z^2]/z - Sqrt[(z - I)/z] Sqrt[z/(z - I)] + Sqrt[(z + I)/z] Sqrt[z/(z + I)])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcCot", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List["2", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"], RowBox[List["ArcCsc", "[", SqrtBox[FractionBox[RowBox[List["2", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]], RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]], "+", "1"]]]], "]"]]]], "-", RowBox[List[FractionBox["\[Pi]", "2"], RowBox[List["(", RowBox[List[FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"], "-", RowBox[List[SqrtBox[FractionBox[RowBox[List["z", "-", "\[ImaginaryI]"]], "z"]], SqrtBox[FractionBox["z", RowBox[List["z", "-", "\[ImaginaryI]"]]]]]], "+", RowBox[List[SqrtBox[FractionBox[RowBox[List["z", "+", "\[ImaginaryI]"]], "z"]], SqrtBox[FractionBox["z", RowBox[List["z", "+", "\[ImaginaryI]"]]]]]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> cot </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mtext> </mtext> </mrow> <mi> z </mi> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msqrt> <mfrac> <mi> z </mi> <mrow> <mi> z </mi> <mo> - </mo> <mi> &#8520; </mi> </mrow> </mfrac> </msqrt> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mi> z </mi> </mfrac> </msqrt> </mrow> <mo> + </mo> <mrow> <msqrt> <mfrac> <mi> z </mi> <mrow> <mi> z </mi> <mo> + </mo> <mi> &#8520; </mi> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mi> z </mi> </mfrac> </msqrt> </mrow> <mo> + </mo> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccot /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arccsc /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <imaginaryi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <imaginaryi /> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCot", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox[SuperscriptBox["z", "2"]], " ", RowBox[List["ArcCsc", "[", SqrtBox[FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]], RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]], "+", "1"]]]], "]"]]]], "z"], "-", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"], "-", RowBox[List[SqrtBox[FractionBox[RowBox[List["z", "-", "\[ImaginaryI]"]], "z"]], " ", SqrtBox[FractionBox["z", RowBox[List["z", "-", "\[ImaginaryI]"]]]]]], "+", RowBox[List[SqrtBox[FractionBox[RowBox[List["z", "+", "\[ImaginaryI]"]], "z"]], " ", SqrtBox[FractionBox["z", RowBox[List["z", "+", "\[ImaginaryI]"]]]]]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21