Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCot






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCot[z] > Representations through equivalent functions > With related functions > Involving sec-1 > Involving cot-1(z) > Involving cot-1(z) and sec-1((1+z2)1/2/z)





http://functions.wolfram.com/01.16.27.1126.01









  


  










Input Form





ArcCot[z] == ((z^(3/2) Sqrt[-1 - z^2])/(Sqrt[-z] Sqrt[1 + z^2])) Sqrt[1/z^2] ArcSec[Sqrt[1 + z^2]/z] - (Sqrt[z/(I + z)] Sqrt[(I + z)/z] - Sqrt[z/(-I + z)] Sqrt[(-I + z)/z] - Sqrt[z^2]/z - 1 + 2 Sqrt[1/(1 - I z)] Sqrt[1 - I z]) (Pi/2)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcCot", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]]]], RowBox[List[SqrtBox[RowBox[List["-", "z"]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]], SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], RowBox[List["ArcSec", "[", FractionBox[SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]], "z"], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[FractionBox["z", RowBox[List["\[ImaginaryI]", "+", "z"]]]], SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "+", "z"]], "z"]]]], "-", RowBox[List[SqrtBox[FractionBox["z", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", "z"]]]], SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", "z"]], "z"]]]], "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"], "-", "1", "+", RowBox[List["2", SqrtBox[FractionBox["1", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]], SqrtBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]]]]], ")"]], FractionBox["\[Pi]", "2"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> cot </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> sec </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> </mrow> <mo> - </mo> <mrow> <msqrt> <mfrac> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> + </mo> <mi> z </mi> </mrow> <mi> z </mi> </mfrac> </msqrt> </mrow> <mo> + </mo> <mrow> <msqrt> <mfrac> <mrow> <mi> &#8520; </mi> <mo> + </mo> <mi> z </mi> </mrow> <mi> z </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mi> z </mi> <mrow> <mi> &#8520; </mi> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msqrt> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccot /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arcsec /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <imaginaryi /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCot", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]], ")"]], " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", RowBox[List["ArcSec", "[", FractionBox[SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]], "z"], "]"]]]], RowBox[List[SqrtBox[RowBox[List["-", "z"]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[FractionBox["z", RowBox[List["\[ImaginaryI]", "+", "z"]]]], " ", SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "+", "z"]], "z"]]]], "-", RowBox[List[SqrtBox[FractionBox["z", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", "z"]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", "z"]], "z"]]]], "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"], "-", "1", "+", RowBox[List["2", " ", SqrtBox[FractionBox["1", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]]]]], ")"]], " ", "\[Pi]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21