Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCoth






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCoth[z] > Representations through equivalent functions > With related functions > Involving cos-1 > Involving coth-1(z1/2) > Involving coth-1(z1/2) and cos-1(2 (-z)1/2/1-z)





http://functions.wolfram.com/01.28.27.0519.01









  


  










Input Form





ArcCoth[Sqrt[z]] == ((Sqrt[-z^2] (1 + z))/(2 (z (1 - z)))) Sqrt[((1 - z)/(1 + z))^2] ArcCos[(2 Sqrt[-z])/(1 - z)] - (Pi/4) (Sqrt[z] Sqrt[-(1/z)] + I ((1 + z)/(1 - z)) Sqrt[((1 - z)/(1 + z))^2] (1 - Sqrt[-z] Sqrt[-(1/z)])) /; Abs[z] != 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcCoth", "[", SqrtBox["z"], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], " "]]]], RowBox[List["2", RowBox[List["z", "(", RowBox[List["1", "-", "z"]], ")"]], " "]]], SqrtBox[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], RowBox[List["1", "+", "z"]]], ")"]], "2"]], RowBox[List["ArcCos", "[", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]], RowBox[List["1", "-", "z"]]], "]"]]]], "-", RowBox[List[FractionBox["\[Pi]", "4"], RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["z"], SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]]]], "+", RowBox[List["\[ImaginaryI]", FractionBox[RowBox[List["1", "+", "z"]], RowBox[List["1", "-", "z"]]], SqrtBox[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], RowBox[List["1", "+", "z"]]], ")"]], "2"]], RowBox[List["(", RowBox[List["(", RowBox[List["1", "-", RowBox[List[SqrtBox[RowBox[List["-", "z"]]], SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]]]]]], ")"]], ")"]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[NotEqual]", "1"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> coth </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#8290; </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8800; </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <arccoth /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arccos /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <neq /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCoth", "[", SqrtBox["z_"], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]]]], ")"]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], RowBox[List["1", "+", "z"]]], ")"]], "2"]], " ", RowBox[List["ArcCos", "[", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]], RowBox[List["1", "-", "z"]]], "]"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]]]], ")"]]]]], "-", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["z"], " ", SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], RowBox[List["1", "+", "z"]]], ")"]], "2"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[SqrtBox[RowBox[List["-", "z"]]], " ", SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]]]]]], ")"]]]], RowBox[List["1", "-", "z"]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[NotEqual]", "1"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-09-04