Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCoth






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCoth[z] > Representations through equivalent functions > With related functions > Involving cos-1 > Involving coth-1(z1/2) > Involving coth-1(z1/2) and cos-1(((1-z)1/2-(-z)1/2)1/2/(21/2(1-z)1/4))





http://functions.wolfram.com/01.28.27.0570.01









  


  










Input Form





ArcCoth[Sqrt[z]] == (-((2 Sqrt[-z^2])/z)) ArcCos[Sqrt[Sqrt[1 - z] - Sqrt[-z]]/(Sqrt[2] (1 - z)^(1/4))] + (Sqrt[(z - 1)/z] Sqrt[z/(z - 1)] - (2 I Sqrt[-z^2])/z - 1) ((Pi I)/2)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcCoth", "[", SqrtBox["z"], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"]]], RowBox[List["ArcCos", "[", FractionBox[SqrtBox[RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "-", SqrtBox[RowBox[List["-", "z"]]]]]], RowBox[List[SqrtBox["2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[FractionBox[RowBox[List["z", "-", "1"]], "z"]], SqrtBox[FractionBox["z", RowBox[List["z", "-", "1"]]]]]], "-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"], "-", "1"]], ")"]], FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> coth </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> z </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mi> z </mi> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mi> z </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mtext> </mtext> </mrow> <mi> z </mi> </mfrac> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </msqrt> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccoth /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arccos /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCoth", "[", SqrtBox["z_"], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], ")"]], " ", RowBox[List["ArcCos", "[", FractionBox[SqrtBox[RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "-", SqrtBox[RowBox[List["-", "z"]]]]]], RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]]], "]"]]]], "z"]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[FractionBox[RowBox[List["z", "-", "1"]], "z"]], " ", SqrtBox[FractionBox["z", RowBox[List["z", "-", "1"]]]]]], "-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-09-04