Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCoth






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCoth[z] > Representations through equivalent functions > With related functions > Involving csc-1 > Involving coth-1((a-z)1/2/(-a-z)1/2) > Involving coth-1((1-z)1/2/(-1-z)1/2) and csc-1(1/z)





http://functions.wolfram.com/01.28.27.1455.01









  


  










Input Form





ArcCoth[Sqrt[1 - z]/Sqrt[-1 - z]] == (Sqrt[-1 - z]/(2 Sqrt[1 + z])) ArcCsc[1/z] - (((Sqrt[-z] z Sqrt[-1 + z^2])/Sqrt[z^2 - z^4]) Sqrt[-(1/z)] + Sqrt[-1 - z]/(2 Sqrt[1 + z])) (Pi/2)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcCoth", "[", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", "z"]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]], RowBox[List["ArcCsc", "[", FractionBox["1", "z"], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["-", "z"]]], " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]]], SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "4"]]]]], SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]]]], "+", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", "z"]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], ")"]], FractionBox["\[Pi]", "2"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> coth </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <msqrt> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccoth /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arccsc /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCoth", "[", FractionBox[SqrtBox[RowBox[List["1", "-", "z_"]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", "z"]]], " ", RowBox[List["ArcCsc", "[", FractionBox["1", "z"], "]"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["-", "z"]]], " ", "z", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]]]], SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "4"]]]]], "+", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", "z"]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], ")"]], " ", "\[Pi]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-09-04