|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.28.27.2371.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcCoth[z] == -2 ArcCosh[Sqrt[Sqrt[z^2 - 1] + z]/
(Sqrt[2] (z^2 - 1)^(1/4))] /; Element[I z, Reals] && I z < 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcCoth", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["ArcCosh", "[", FractionBox[SqrtBox[RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]], "+", "z"]]], RowBox[List[SqrtBox["2"], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]]], "]"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "\[Element]", "Reals"]], "\[And]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "<", "0"]]]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> coth </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> cosh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mi> z </mi> </mrow> </msqrt> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ∈ </mo> <mi> ℝ </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> < </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <arccoth /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <arccosh /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <ci> ℝ </ci> </apply> <apply> <lt /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCoth", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["ArcCosh", "[", FractionBox[SqrtBox[RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]], "+", "z"]]], RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]]], "]"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "\[Element]", "Reals"]], "&&", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "<", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|