| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.28.27.0028.02 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | ArcCoth[Sqrt[(z + 1)/(z - 1)]] == 
 (1/2) Sqrt[(z - 1)/(z + 1)] Sqrt[(z + 1)/(z - 1)] ArcCosh[z] + 
  ((Pi I)/2) (Sqrt[z + 1] Sqrt[1/(z + 1)] - 1) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["ArcCoth", "[", SqrtBox[FractionBox[RowBox[List["z", "+", "1"]], RowBox[List["z", "-", "1"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "2"], SqrtBox[FractionBox[RowBox[List["z", "-", "1"]], RowBox[List["z", "+", "1"]]]], " ", SqrtBox[FractionBox[RowBox[List["z", "+", "1"]], RowBox[List["z", "-", "1"]]]], RowBox[List["ArcCosh", "[", "z", "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"], RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["z", "+", "1"]]], " ", SqrtBox[FractionBox["1", RowBox[List["z", "+", "1"]]]]]], "-", "1"]], ")"]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msup>  <mi> coth </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <msqrt>  <mfrac>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </msqrt>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cosh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </msqrt>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <arccoth />  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <arccosh />  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <pi />  <imaginaryi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCoth", "[", SqrtBox[FractionBox[RowBox[List["z_", "+", "1"]], RowBox[List["z_", "-", "1"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", SqrtBox[FractionBox[RowBox[List["z", "-", "1"]], RowBox[List["z", "+", "1"]]]], " ", SqrtBox[FractionBox[RowBox[List["z", "+", "1"]], RowBox[List["z", "-", "1"]]]], " ", RowBox[List["ArcCosh", "[", "z", "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["z", "+", "1"]]], " ", SqrtBox[FractionBox["1", RowBox[List["z", "+", "1"]]]]]], "-", "1"]], ")"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |