Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCoth






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCoth[z] > Representations through equivalent functions > With related functions > Involving csch-1 > Involving coth-1(2 (1+z2)1/2/2+z2) > Involving coth-1(2 (1+z2)1/2/2+z2) and csch-1(z)





http://functions.wolfram.com/01.28.27.3165.01









  


  










Input Form





ArcCoth[(2 Sqrt[1 + z^2])/(2 + z^2)] == (Sqrt[z^2/(z^2 + 1)] Sqrt[(1 + z^2)/z^2] + (I Sqrt[-z^2])/(2 Sqrt[z^2]) - 1) Pi I + ((2 z)/Sqrt[1 + z^2]) Sqrt[1 + 1/z^2] ArcCsch[z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcCoth", "[", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]], RowBox[List["2", "+", SuperscriptBox["z", "2"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[FractionBox[SuperscriptBox["z", "2"], RowBox[List[SuperscriptBox["z", "2"], "+", "1"]]]], SqrtBox[FractionBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "2"]]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["z", "2"]]]]], "-", "1"]], ")"]], "\[Pi]", " ", "\[ImaginaryI]"]], "+", RowBox[List[FractionBox[RowBox[List["2", " ", "z", " "]], SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["z", "2"]]]]], RowBox[List["ArcCsch", "[", "z", "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> coth </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> + </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccoth /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <pi /> <imaginaryi /> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arccsch /> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCoth", "[", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z_", "2"]]]]]], RowBox[List["2", "+", SuperscriptBox["z_", "2"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[FractionBox[SuperscriptBox["z", "2"], RowBox[List[SuperscriptBox["z", "2"], "+", "1"]]]], " ", SqrtBox[FractionBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "2"]]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["z", "2"]]]]], "-", "1"]], ")"]], " ", "\[Pi]", " ", "\[ImaginaryI]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "z"]], ")"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", RowBox[List["ArcCsch", "[", "z", "]"]]]], SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-09-04